Skip to main content
Log in

Desulfonatronum zhilinae sp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from soda Lake Alginskoe, Trans-Baikal Region, Russia

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A novel haloalkaliphilic sulfate-reducing bacterium, designated Al915-01T, was isolated from benthic sediments of the Lake Alginskoe, a soda lake located in the Trans-Baikal Region, Russia. Cells of the strain were Gram-stain negative, motile, non-spore-forming vibrion (0.4–0.5 × 1.2–2.3 µm). Strain Al915-01T grew in the pH range from 8.0 to 10.5 (optimum pH 9.0) and required NaCl for growth (5–100 g l−1 NaCl, optimum 40 g l−1). The bacterium grew at 10–40 °C (optimally at 36 °C) and used lactate, formate and pyruvate as electron donors in the presence of sulfate. It was able to reduce sulfate, sulfite, thiosulfate and nitrate with lactate as an electron donor. The isolate was able to grow lithoheterotrophically with sulfate and molecular hydrogen if acetate was added as a carbon source. The predominant fatty acids were anteisoC15:0, isoC17:1, C18:1ω7 and C16:1ω7. The G+C content in the DNA was 58.3 ± 1 mol %. Analysis of the 16S rRNA gene sequence showed that the new bacterium belongs to the genus Desulfonatronum. The closest relatives were Desulfonatronum buryatense Ki5T (99.9 % similarity) and Desulfonatronum lacustre Z-7951T (99.2 % similarity). On the basis of the genotypic, phenotypic and phylogenetic characteristics, the isolate is proposed as a representative of a novel species Desulfonatronum zhilinae with the type strain Al915-01T (=VKM B-2744T = DSM 26338T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abidueva EYU, Dondupova NB, Khahinov VV (2011) Hydro-chemical and microbiological parameters of the lakes Alginskoye Bolshoye and Gudzhirganskoye (Buryatia). Bull Buryat State Univ 3:85–87 (in Russian)

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 2., 68Academic Press, New York, pp 41–98

    Google Scholar 

  • Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF (1998) GenBank. Nucleic Acids Res 26:1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boltyanskaya YUV (2007) Haloalkaliphilic denitrifying bacteria of the genus Halomonas from soda lakes. Proceedings of Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Nauka, pp 276–299 (in Russian)

  • Cline JD (1969) Spectrophometric determination of hydrogen sulphide in natural water. Limnol Oceanogr 14:444–458

    Article  Google Scholar 

  • Dalsgaard T, Bak F (1994) Nitrate reduction in a sulfate-reducing bacterium Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics and regulation. Appl Environ Microbiol 60:291–297

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gorlenko VM, Namsaraev BB, Kulyrova AV, Zavarzina DG, Zhilina TN (1999) Activity of sulfate-reducing bacteria in bottom sediments of South-Eastern Transbaikaliya soda lakes. Mikrobiologiya 68:664–670 (in Russian)

    Google Scholar 

  • Hoeft SE, Blum SJ, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS (2007) Alkalilimnicola ehrlichii sp. nov., a novel arsenite-oxidizing, haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512

    Article  CAS  PubMed  Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris R, Ribbons RW (eds) Methods in microbiology, vol 13. Academic Press, New York, pp 117–132

    Google Scholar 

  • Huß VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2005a) Order II. Desulfovibrionales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), vol 2. Springer, New York, pp 925–926

    Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2005b) Order III. Desulfobacterales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), vol 2. Springer, New York, p 959

    Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2005c) Family IV. Desulfonatronumaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), vol 2. Springer, New York, p 956

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lovley DR, Phillips EJP (1986) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52:751–757

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov., sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  CAS  PubMed  Google Scholar 

  • Marmur J (1961) A procedure for isolation of deoxyribonucleic acid from microorganism. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Namsaraev BB, Namsaraev ZB (2007) Microbial processes of carbon cycles in alkaline lakes of Transbaikalian region and Mongolia. In: Proceedings of Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Nauka, pp 229–323 (in Russian)

  • Pfennig N (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralbl Bakteriol I Abt IS (Suppl. V), pp 179–185

  • Pikuta EV, Zhilina TN, Zavarzin GA, Kostrikina NA, Osipov GA, Rainey FA (1998) Desulfonatronum lacustre gen. nov., sp. nov., a novel alkaliphilic, ethanol-consuming, sulfate-reducing bacterium. Mikrobiologiya 67:123–131 (in Russian)

    Google Scholar 

  • Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Akimenko V, Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33

    Article  CAS  PubMed  Google Scholar 

  • Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryter A, Kellenberger E, Birchandersen A, Maaloe O (1958) Etude au microscope électronique de plasmas contenant de l’acide désoxyribonucléique. I Les nucléoides des bactéries en croissance active Z Naturforsch B 13:597–605

    Google Scholar 

  • Ryzhmanova Y, Nepomnyashchaya Y, Abashina T, Ariskina E, Troshina O, Vainshtein M, Shcherbakova V (2013) New sulfate-reducing bacteria isolated from Buryatian alkaline brackish lakes: description of Desulfonatronum buryatense sp. nov. Extremophiles 17:851–859

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual 2nd end. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Shapovalova AA, Hizhniak TV, Tourova TP, Muyzer G, Sorokin DY (2009) Halomonas chromatireducens sp. nov., a novel haloalkaliphile from soda soil capable of aerobic chromate reduction. Microbiology (Moscow) 78:117–127

    Article  CAS  Google Scholar 

  • Smibert R, Krieg N (1994) Phenotypic characterization. In: Gerhardt P, Murrey R, Wood W, Krieg N (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Sorokin DY, Kuenen JG, Jetten MSM (2001) Denitrification at extremely high pH values by alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch Microbiol 175:94–101

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Zhilina TN, Spiridonova EM, Tourova TP, Lysenko AM (2006) Increased metabolic versatility of haloalkaliphilic bacteria belonging to the AlkalispirillumAlkalilimnicola group from soda lakes. Extremophiles 10:213–220

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Henstra AM, Stams AJ, Galinski EA, Muyzer G (2008) Sulfidogenesis at extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov., a novel lineage of the Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Kuenen JG, Muyzer G (2011a) The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Kolganova TV, Detkova EN, Galinski EA, Muyzer G (2011b) Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles 15:391–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Muyzer G (2013) Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp. nov., and Sulfurospirillum alkalitolerans sp. nov. Extremophiles 17:535–543

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Eck GR (1966) Physiological and chemical tests for drinking water. NEN 1056, IY–2 Nederlandse Normalisatie Instituut Rijswijk

  • Zavarzin GA, Zhilina TN, Pikuta EV (1996) Secondary anaerobes in haloalkaliphilic communities in lakes of Tuva. Microbiology 65:480–486

    Google Scholar 

  • Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Mikrobiology (Moscow, English Translation) 68:503–521

  • Zhilina TN, Zavarzin GA (1994) Alkaliphilic anaerobic community at pH 10. Curr Microbiol 29:109–112

    Article  CAS  Google Scholar 

  • Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA (2005) Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 55:1001–1006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr N. A. Kostrikina (Winogradsky Institute of Microbiology, RAS) for assistance with electron microscopy, Dr Y. Osipov (Bakulev Centre of Cardiovascular Surgery, Moscow, Russia) for the cell-envelope fatty acid assay and Dr A. Avtukh (Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS) for the organic acids assay. The work was supported by an RFBR grant (Project No. 12-04-31353) and the Ministry of Education and Science of the Russian Federation (Contract No. 14.518.11.7069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiya G. Zakharyuk.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharyuk, A.G., Kozyreva, L.P., Khijniak, T.V. et al. Desulfonatronum zhilinae sp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from soda Lake Alginskoe, Trans-Baikal Region, Russia. Extremophiles 19, 673–680 (2015). https://doi.org/10.1007/s00792-015-0747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0747-0

Keywords

Navigation