Skip to main content

Advertisement

Log in

Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The Carnoulès mine is an extreme environment located in the South of France. It is an unusual ecosystem due to its acidic pH (2–3), high concentration of heavy metals, iron, and sulfate, but mainly due to its very high concentration of arsenic (up to 10 g L−1 in the tailing stock pore water, and 100–350 mg L−1 in Reigous Creek, which collects the acid mine drainage). Here, we present a survey of the archaeal community in the sediment and its temporal variation using a culture-independent approach by cloning of 16S rRNA encoding genes. The taxonomic affiliation of Archaea showed a low degree of biodiversity with two different phyla: Euryarchaeota and Thaumarchaeota. The archaeal community varied in composition and richness throughout the sampling campaigns. Many sequences were phylogenetically related to the order Thermoplasmatales represented by aerobic or facultatively anaerobic, thermoacidophilic autotrophic or heterotrophic organisms like the organotrophic genus Thermogymnomonas. Some members of Thermoplasmatales can also derive energy from sulfur/iron oxidation or reduction. We also found microorganisms affiliated with methanogenic Archaea (Methanomassiliicoccus luminyensis), which are involved in the carbon cycle. Some sequences affiliated with ammonia oxidizers, involved in the first and rate-limiting step in nitrification, a key process in the nitrogen cycle were also observed, including Candidatus Nitrososphaera viennensis and Candidatus nitrosopumilus sp. These results suggest that Archaea may be important players in the Reigous sediments through their participation in the biochemical cycles of elements, including those of carbon and nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552

    Article  PubMed  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72(9):5734–5741

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44(2):139–152

    Article  PubMed  CAS  Google Scholar 

  • Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F, Gallien S, Lauga B, Casiot C, Calteau A, Vallenet D, Bonnefoy V, Bruneel O, Chane-Woon-Ming B, Cleiss-Arnold J, Duran R, Elbaz-Poulichet F, Fonknechten N, Giloteaux L, Halter D, Koechler S, Marchal M, Mornico D, Schaeffer C, Smith AAT, Van Dorsselaer A, Weissenbach J, Medigue C, Le Paslier D (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5(11):1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66(9):3842–3849

    Article  PubMed  CAS  Google Scholar 

  • Bowell RJ (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9(3):279–286

    Article  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6(3):245–252

    Article  PubMed  CAS  Google Scholar 

  • Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14(3):274–281

    Article  PubMed  Google Scholar 

  • Brofft JE, McArthur JV, Shimkets LJ (2002) Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environ Microbiol 4(11):764–769

    Article  PubMed  CAS  Google Scholar 

  • Bruneel O, Personne JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ, Le Fleche A, Grimont PA (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoules, France). J Appl Microbiol 95(3):492–499

    Article  PubMed  CAS  Google Scholar 

  • Bruneel O, Pascault N, Egal M, Bancon-Montigny C, Goñi-Urriza M, Elbaz-Poulichet F, Personné JC, Duran R (2008) Archaeal diversity in a Fe–As rich acid mine drainage at Carnoulès (France). Extremophiles 12(4):563–571

    Article  PubMed  CAS  Google Scholar 

  • Bruneel O, Volant A, Gallien S, Chaumande B, Casiot C, Carapito C, Bardil A, Morin G, Brown GE, Personné JC, Le Paslier D, Schaeffer C, Van Dorsselaer A, Bertin PN, Elbaz-Poulichet F, Arsene-Ploetze F (2011) Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich creek sediments. Microb Ecol 61(4):793–810

    Article  PubMed  Google Scholar 

  • Casiot C, Morin G, Juillot F, Bruneel O, Personné JC, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-Poulichet F (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37(12):2929–2936

    Article  PubMed  CAS  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33(7–8):853–866

    Article  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89(12):5685–5689

    Article  PubMed  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  PubMed  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70(4):2079–2088

    Article  PubMed  CAS  Google Scholar 

  • Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2011) The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J Antimicrob Chemother 66(9):2038–2044

    Article  PubMed  CAS  Google Scholar 

  • Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihring TM, Cardona MM, Hu B, McGuire MM, Hamers RJ, Pace NR, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: Case study at Iron Mountain, California. Geomicrobiol J 16(2):155–179

    Article  CAS  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287(5459):1796–1799

    Article  PubMed  CAS  Google Scholar 

  • Egal M, Casiot C, Morin G, Elbaz-Poulichet F, Cordier MA, Bruneel O (2010) An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France). Appl Geochem 25(12):1949–1957

    Article  CAS  Google Scholar 

  • Forterre P, Brochier C, Philippe H (2002) Evolution of the Archaea. Theor Popul Biol 61(4):409–422

    Article  PubMed  Google Scholar 

  • García-Moyano A, González-Toril E, Aguilera A, Amils R (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). Syst Appl Microbiol 30(8):601–614

    Article  PubMed  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrateva TF, Moore ER, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50 Pt 3:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40(3/4):237–264

    Article  Google Scholar 

  • Gregersen LH, Habicht KS, Peduzzi S, Tonolla M, Canfield DE, Miller M, Cox RP, Frigaard NU (2009) Dominance of a clonal green sulfur bacterial population in a stratified lake. FEMS Microbiol Ecol 70(1):30–41

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104(3–4):448–453

    Article  CAS  Google Scholar 

  • Hohmann C, Morin G, Ona-Nguema G, Guigner JM, Brown GE Jr, Kappler A (2011) Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Geochim Cosmochim Acta 75(17):4699–4712

    Article  CAS  Google Scholar 

  • Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23(3):305–314

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Yoshikawa N, Takashina T (2007) Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int J Syst Evol Microbiol 57(11):2557–2561

    Article  PubMed  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473

    Article  PubMed  CAS  Google Scholar 

  • Maillot F (2011) Structure locale des nano-oxyhydroxydes de fer(III) de type ferrihydrite et schwertmannite. PhD thesis, UPMC, Paris

  • Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T (2011) Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone. Microbes Environ 26(1):23–29

    Article  PubMed  Google Scholar 

  • Mohapatra BR, Douglas Gould W, Dinardo O, Koren DW (2011) Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: a review of molecular methods. Miner Eng 24(8):709–718

    Article  CAS  Google Scholar 

  • Morin G, Juillot F, Casiot C, Bruneel O, Personne JC, Elbaz-Poulichet F, Leblanc M, Ildefonse P, Calas G (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoules acid mine drainage, France. A XANES, XRD, and SEM study. Environ Sci Technol 37(9):1705–1712

    Article  PubMed  CAS  Google Scholar 

  • Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE Jr (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39(23):9147–9155

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300(5621):939–944

    Article  PubMed  CAS  Google Scholar 

  • Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach AL (2001) Order I. Thermoplasmatales ord. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, p 335

    Google Scholar 

  • Rodier J, Broutin JP, Chambon P, Champsaur H, Rodi L (1996) L’Analyse des Eaux. Dunod, Paris, p 1383

    Google Scholar 

  • Rowe OF, Sánchez España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9(7):1761–1771

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Samanta G, Clifford DA (2005) Preservation of inorganic arsenic species in groundwater. Environ Sci Technol 39(22):8877–8882

    Article  PubMed  CAS  Google Scholar 

  • Sánchez España J, Pamo EL, Pastor ES, Andrés JR, Rubí JAM (2005) The natural attenuation of two acidic effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environ Geol 49(2):253–266

    Article  Google Scholar 

  • Sánchez-Andrea I, Rodriguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77(17):6085–6093

    Article  PubMed  Google Scholar 

  • Sanz JL, Rodriguez N, Diaz EE, Amils R (2011) Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Environ Microbiol 13(8):2336–2341

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3(6):479–488

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67(9):4374–4376

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Plewniak F, Thierry J, Poch O (2000) DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res 28(15):2919–2926

    Article  PubMed  CAS  Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 108(20):8420–8425

    Article  PubMed  CAS  Google Scholar 

  • Yue JC, Clayton MK (2005) A similarity measure based on species proportions. Commun Stat Theory Methods 34(11):2123–2131

    Article  Google Scholar 

  • Zeikus JG, Wolee RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109(2):707–713

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The French CRG is gratefully acknowledged for provision of beamtime on the FAME BM30B beamline. This work was supported by EC2CO CNRS/INSU program, by ACI/FNS Grant #3033 and by SESAME IdF Grant #1775. Part of the field chemical data was acquired through the OSU OREME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bruneel.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Mineralogical and As speciation data obtained from XANES, EXAFS, and XRD analyses of the solid samples studied are provided as Supporting Information in Figures S1, S2 and S3, respectively.

792_2012_466_MOESM1_ESM.tiff

Figure S1 Results of As K-edge XANES data fit using linear combination of two model compound spectra representative of arsenate and arsenite. These model compounds are amorphous As(V)- and As(III)-Fe(III) oxyhydroxide phases (referred to as cppAs(V) and cppAs(III), respectively) and characterized in detail in Morin et al. (2003). Accuracy of individual components is estimated to ± 5% and components lower than 10% are not significant. A minor component of arsenopyrite was suspected in sample COWG Jan09, while being close to the limit of detection (TIFF 1062 kb)

792_2012_466_MOESM2_ESM.pdf

Figure S2 Results of As K-edge EXAFS data fit using linear combination of three model compound spectra representative of arsenate and arsenite species in the samples studied. These model compounds include biogenic amorphous As(V)-Fe(III) oxyhydroxysulfate synthesized using Thiomonas sp. strain B2, abiotic amorphous As(V)-Fe(III) oxyhydroxysulfate with As/Fe = 0.8 mol/mol (Maillot et al., 2011), and biogenic As(III) rich schwertmannite synthesized using Acidithiobacillus ferrooxidans strain CC1. Accuracy of individual components is estimated to ± 20% and components lower than 15% are not significant (PDF 52 kb)

792_2012_466_MOESM3_ESM.tiff

Figure S3 XRD powder data of the solid COWG samples studied. Qz: quartz, Fk: K-feldspar, Mu: muscovite; Ja: jarosite; Py: pyrite (TIFF 1062 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volant, A., Desoeuvre, A., Casiot, C. et al. Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles 16, 645–657 (2012). https://doi.org/10.1007/s00792-012-0466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0466-8

Keywords

Navigation