Skip to main content
Log in

Applications of flow cytometry in environmental microbiology and biotechnology

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Flow cytometry (FCM) is a technique for counting, examining and sorting microscopic particles suspended in a stream of fluid. It uses the principles of light scattering, light excitation and the emission from fluorescent molecules to generate specific multiparameter data from particles and cells. The cells are hydrodynamically focussed in a sheath solution before being intercepted by a focused light source provided by a laser. FCM has been used primarily in medical applications but is being used increasingly for the examination of individual cells from environmental samples. It has found uses in the isolation of both culturable and hitherto non-culturable bacteria present infrequently in environmental samples using appropriate growth conditions. FCM lends itself to high-throughput applications in directed evolution for the analysis of single cells or cell populations carrying mutant genes. It is also suitable for encapsulation studies where individual bacteria are compartmentalised with substrate in water-in-oil-in-water emulsions or with individual genes in transcriptional/translational mixtures for the production of mutant enzymes. The sensitivity of the technique has allowed the examination of gene optimisation by a procedure known as random or neutral drift where screening and selection is based on the retention of some predetermined level of activity through multiple rounds of mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS (2005a) High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem Biol 12:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Griffiths AD, Tawfik DS (2005b) High-throughput screens and selections of enzyme-encoding genes. Curr Opin Chem Biol 9:210–216

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Thieme K, Chiu CPC, Buchini S, Lairson LL, Chen H, Strynadka NCJ, Wakarchuk WW, Withers SG (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods 3:609–614

    Article  PubMed  CAS  Google Scholar 

  • Alagappan A, Tujula NA, Power M, Ferguson CM, Bergquist PL, Ferrari BC (2008) Development of fluorescent in situ hybridisation for Cryptosporidium detection reveals zoonotic and anthroponotic transmission of sporadic cryptosporidiosis in Sydney. J Microbiol Meth 75:535–539

    Article  CAS  Google Scholar 

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleife KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Amitai G, Gupta RD, Tawfik DS (2007) Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J 1:67–78

    Article  PubMed  CAS  Google Scholar 

  • Bahl MJ, Hansen LH, Licht TR, Sorensen SJ (2004) In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine. Antimicrob Agents Chemother 48:1112–1117

    Article  PubMed  CAS  Google Scholar 

  • Baty AM, Eastburn CC, Diwu Z, Techkarnjanaruk S, Goodman AE, Geesey GG (2000) Differentiation of chitinase-active and non-chitinase-active subpopulations of a marine bacterium during chitin degradation. Appl Environ Microbiol 66:3566–3573

    Article  PubMed  CAS  Google Scholar 

  • Bell PJL, Deere D, Shen J, Chapman B, Bissenger PH, Attfield PA, Veal DA (1998) A flow cytometric method for rapid selection of novel industrial yeast hybrids. Appl Environ Microbiol 64:1669–1672

    PubMed  CAS  Google Scholar 

  • Bergquist PL, Gibbs MD (2006) Degenerate oligonucleotide gene shuffling (DOGS). In: Mueller K, Arndt K (eds) Protein engineering protocols, methods in molecular biology series, vol 352, pp 191–204

  • Bergquist PL, Reeves RA, Gibbs MD (2005) Degenerate Oligonucleotide Gene Shuffling (DOGS) and Random Drift Mutagenesis (RNDM): two complementary techniques for enzyme evolution. Biomol Eng 22:63–72

    Article  PubMed  CAS  Google Scholar 

  • Bernath K, Hai M, Mastrobattista E, Griffiths A, Magdassi S, Tawfik DS (2003) In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting. Anal Biochem 325:151–157

    Article  Google Scholar 

  • Bershtein S, Tawfik DS (2008) Advances in the laboratory evolution of enzymes. Curr Opin Chem Biol 12:151–158

    Article  PubMed  CAS  Google Scholar 

  • Bershtein S, Goldin K, Dawfik DS (2008) Intense neutral drifts yield robust and evolvable consensus proteins. J Mol Biol 379:1029–1044

    Article  PubMed  CAS  Google Scholar 

  • Bessler C, Schmitt J, Maurer KH, Schmid RD (2003) Directed evolution of a bacterial α-amylase: toward enhanced pH performance and higher specific activity. Protein Sci 12:2141–2149

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    PubMed  CAS  Google Scholar 

  • Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci USA 103:5869–5874

    Article  PubMed  CAS  Google Scholar 

  • Bloom JD, Romero PA, Lu Z, Arnold FH (2007) Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol Direct 17:2

    Google Scholar 

  • Breton C, Mucha J, Jeanneau C (2001) Structural and functional features of glycosyltransferases. Biochimie 83:713–718

    Article  PubMed  CAS  Google Scholar 

  • Burmolle M, Hansen LH, Sorensen SJ (2005) Use of a whole-cell biosensor and flow cytometry to detect AHL production by an indigenous soil community during decomposition of litter. Microb Ecol 50:221–229

    Article  PubMed  CAS  Google Scholar 

  • Chopra S, Rananathan A (2003) Protein evolution by “codon shuffling”: a novel method for generating highly variant mutant libraries by assembly of hexamer DNA duplexes. Chem Biol 10:917–926

    Article  PubMed  CAS  Google Scholar 

  • Clausell-Tormos J, Lieber D, Baret J-C, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427–437

    Article  PubMed  CAS  Google Scholar 

  • Czechowska K, Johnson DR, van der Meer JR (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 11:205–212

    Article  PubMed  CAS  Google Scholar 

  • Davey HM (2002) Flow cytometric techniques for the detection of microorganisms. Methods Cell Sci 24:91–97

    Article  PubMed  CAS  Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    PubMed  CAS  Google Scholar 

  • Davis K, Lin Y, Abrams B, Jayasena SD (1998) Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucl Acids Res 26:3915–3924

    Article  PubMed  CAS  Google Scholar 

  • Dignum M, Hoogveld H, Matthijs HCP, Laanbroek HJ, Pel R (2004) Detecting the phosphate status of phytoplankton by enzyme-labelled fluorescence and flow cytometry. EMS Microbiol Ecol 48:29–38

    Article  CAS  Google Scholar 

  • Doi N, Kumadaki S, Oishi Y, Matsumura N, Yanagawa H (2004) In vitro selection of restriction endonucleases by in vitro compartmentalization. Nucl Acids Res 32:e95

    Article  PubMed  Google Scholar 

  • Ferrari BC, Bergquist PL (2007) Quantum Dots as alternatives to organic fluorophores for Cryptosporidium detection using conventional flow cytometry and specific monoclonal antibodies: lessons learned. Cytometry A 71:265–271

    PubMed  CAS  Google Scholar 

  • Ferrari BC, Winsley T (2009) Fluorescence-activated cell sorting combined with a soil substrate membrane system allows for novel filamentous bacteria from the CFB group to be targeted for cultivation in the laboratory Environ Microbiol (in press)

  • Ferrari BC, Oregaard G, Sorensen SJ (2004) Recovery of GFP-labeled bacteria for culturing and molecular analysis after cell sorting using a benchtop flow cytometer. Microb Ecol 48:239–245

    Article  PubMed  CAS  Google Scholar 

  • Ferrari BC, Winsley T, Gillings M, Binnerup S (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Festin R, Bjorklund B, Totterman YH (1987) Detection of triple antibody-binding lymphocytes in standard single laser flow cytometry with colloidal gold, fluorescein and phycoerythrin as labels. J Immunol Methods 101:23–28

    Article  PubMed  CAS  Google Scholar 

  • Fuchs BM, Zubkov MV, Sahm K, Burkill PH, Amann R (2000) Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ Microbiol 2:191–201

    Article  PubMed  CAS  Google Scholar 

  • Ghadessy FJ, Holliger P (2004) A novel emulsion mixture for in vitro compartmentalization of transcription and translation in the rabbit reticulocyte system”. Protein Eng Des Sel 17:201–204

    Article  PubMed  CAS  Google Scholar 

  • Ghadessy FJ, Ong JL, Holliger P (2001) Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci USA 98:4552–4557

    Article  PubMed  CAS  Google Scholar 

  • Gibbs MD, Nevalainen KMH, Bergquist PL (2001) Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271:13–20

    Article  PubMed  CAS  Google Scholar 

  • Green BD, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17:236–240

    Article  PubMed  CAS  Google Scholar 

  • Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 22:24–35

    Article  PubMed  CAS  Google Scholar 

  • Griffiths AD, Tawfik DS (2006) Miniaturising the laboratory in emulsion droplets. Trends Biotech 24:395–402

    Article  CAS  Google Scholar 

  • Gupta RD, Tawfik DS (2008) Directed enzyme evolution via small and effective neutral drift libraries. Nat Methods 5:939–942

    Article  PubMed  CAS  Google Scholar 

  • Hansen LH, Ferrari B, Sorensen AH, Veal D, Sorensen SJ (2001) Detection of oxytetracycline production by Streptomyces rimosus in soil microcosms by combining whole-cell biosensors and flow cytometry. Appl Environ Microbiol 67:239–244

    Article  PubMed  CAS  Google Scholar 

  • Hoefel D, Monis PT, Grooby WL, Andrews S, Saint CP (2005) Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system. Appl Environ Microbiol 71:6479–6488

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481–483

    Article  PubMed  CAS  Google Scholar 

  • Ibáñez-Peral R, Bergquist PL, Walter M, Gibbs M, Goldys EM, Ferrari B (2008) Potential use of quantum dots in flow cytometry. Int J Mol Sci 9:2622–2638

    Article  PubMed  Google Scholar 

  • Ishoey T, Wayk T, Stepanauskas R, Novotny M, Lasken RS (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opinion Microbiol 11:198–204

    Article  CAS  Google Scholar 

  • Jäckel C, Kast P, Hilvert D (2008) Protein design by directed evolution. Ann Rev Biophys 37:153–173

    Article  Google Scholar 

  • Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2008) Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME J 2:696–706

    Article  PubMed  CAS  Google Scholar 

  • Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2:141–150

    Article  PubMed  CAS  Google Scholar 

  • Kelly BT, Baret J-C, Taly V, Griffiths AD (2007) Miniaturizing chemistry and biology in microdroplets. Chem Commun 1773–1778

  • Kramer MF, Vesey G, Look NL, Herbert BR, Simpson-Stroot JM, Lim DV (2007) Development of a Cryptosporidium oocyst assay using an automated fiber optic-based biosensor. J Biol Eng 1:3

    Article  PubMed  Google Scholar 

  • Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281

    Article  PubMed  CAS  Google Scholar 

  • Martemyanov KA, Shirokov VA, Kurnasov OV, Gudkov AT, Spirin AS (2001) Cell-free production of biologically active polypeptides: application to the synthesis of antibacterial peptide Cecropin. Protein Expr Purif 21:456–461

    Article  PubMed  CAS  Google Scholar 

  • Mastrobattista E, Taly V, Chanudet E, Treacy P, Kelly BT, Griffiths AD (2005) High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. Chem Biol 12:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Matsuuraa T, Yomo T (2006) In vitro evolution of proteins. J Biosci Bioeng 101:449–456

    Article  Google Scholar 

  • Mattanovich D, Borth N (2006) Applications of cell sorting in biotechnology. Microb Cell Fact 5:12

    Article  PubMed  Google Scholar 

  • Miller OJ, Bernath K, Agresti JJ, Amitai G, Kelly BT, Mastrobattista E, Taly V, Magdassi S, Tawfik DS, Griffiths AD (2006) Directed evolution by in vitro compartmentalization. Nat Methods 3:561–570

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi R, Oki K, Aoi Y, Tsuneda S (2007) Diversity of nitrite reductase genes in “Candidatus Accumulibacter phosphatis”-dominated cultures enriched by flow-cytometric sorting. Appl Environ Microbiol 73:5331–5337

    Article  PubMed  CAS  Google Scholar 

  • Musovic S, Oregaard G, Kroer N, Sorensen SJ (2006) Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl Environ Microbiol 72:6687–6692

    Article  PubMed  CAS  Google Scholar 

  • Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluoroescent protein. Nat Biotechnol 24:79–88

    Article  PubMed  Google Scholar 

  • Roodveldt C, Aharoni A, Tawfik DS (2005) Directed evolution of proteins for heterologous expression and stability. Curr Opin Struct Biol 15:50–56

    Article  PubMed  CAS  Google Scholar 

  • Rothe A, Surjadi RN, Power BE (2006) Novel proteins in emulsions using in vitro compartmentalization. Trends Biotechnol 24:587–592

    Article  PubMed  CAS  Google Scholar 

  • Shapiro HM (2003) Practical Flow Cytometry. Wiley, Hoboken

    Book  Google Scholar 

  • Sorensen SJ, Sorensen AH, Hansen LH, Oregaard G, Veal D (2003) Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene. Curr Microbiol 47:129–133

    Article  PubMed  CAS  Google Scholar 

  • Taly V, Kelly BT, Griffiths AD (2007) Droplets as microreactors for high-throughput biology. ChemBiochem 8:263–272

    Article  PubMed  CAS  Google Scholar 

  • Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    Article  PubMed  CAS  Google Scholar 

  • Turner NJ (2003) Directed evolution of enzymes for applied biocatalysis. Trends Biotech 21:474–478

    Article  CAS  Google Scholar 

  • Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93

    Article  PubMed  CAS  Google Scholar 

  • Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000) Fluorescent staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243:191–210

    Article  PubMed  CAS  Google Scholar 

  • Vesey G, Slade JS, Byrne M, Shepherd K, Dennis PJ, Fricker CR (1993) Routine monitoring of Cryptosporidium oocysts in water using flow cytometry. J Appl Bacteriol 75:87–90

    PubMed  CAS  Google Scholar 

  • Vesey G, Hutton P, Champion A, Ashbolt N, Williams KL, Warton A, Veal DA (1994a) Application of flow cytometric methods for the routine detection of Cryptosporidium and Giardia in water. Cytometry 16:1–6

    Article  PubMed  CAS  Google Scholar 

  • Vesey G, Narai J, Ashbolt N, Williams K, Veal D (1994b) Detection of specific microorganisms in environmental samples using flow cytometry. In: Darzynkiewicz Z, Robinson JP, Crissman HA (eds) Methods in cell biology, flow cytometry, 2nd edn. Academic Press, New York

    Google Scholar 

  • Wallner G, Steinmetz I, Bitter-Suermann D, Amann R (1996) Combination of rRNA-targeted probes and immuno-probes for the identification of bacteria by flow cytometry. Syst Appl Microbiol 19:569–576

    CAS  Google Scholar 

  • Wallner G, Fuchs B, Spring S, Beisker W, Amann R (1997) Flow sorting of microorganisms for molecular analysis. Appl Environ Microbiol 63:4223–4231

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    Article  PubMed  CAS  Google Scholar 

  • Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Upson RH, Diwu Z, Haugland RP (1996) A fluorogenic substrate for β-glucuronidase: applications in fluorometric, polyacrylamide gel and histochemical assays. J Biochem Biophys Methods 33:197–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research at Macquarie was made possible by grants from the Australian Research Council, the Macquarie University Innovation Grants Fund and from Applimex Systems Pty Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Bergquist.

Additional information

Communicated by H. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergquist, P.L., Hardiman, E.M., Ferrari, B.C. et al. Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles 13, 389–401 (2009). https://doi.org/10.1007/s00792-009-0236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0236-4

Keywords

Navigation