Skip to main content
Log in

A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

An NAD+-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD+ as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD+. F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85°C and the most active at 70°C. The half-life time and k cat value at 60°C were calculated to be 50 min and 27,400 min−1, respectively. The enzyme also shows high catalytic efficiency at low temperatures (0–20°C) (k cat/K m at 10°C; 12,600 mM−1 min−1) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AlcDH:

Alcohol dehydrogenase

CHES:

N-cyclohexyl-2-aminoethanesulfonic acid

conc.:

Concentration

KPB:

Potassium phosphate buffer

LMW:

Low molecular weight

PVDF:

Poly (vinylidene fluoride)

Tris:

Tris (hydroxymethyl) aminomethane

UPGMA:

Unweighted pair-group method with arithmetic mean

References

  • Akeson A (1964) On the zinc content of horse liver alcohol dehydrogenase. Biochem Biophys Res Commun 17:211–214

    Article  PubMed  CAS  Google Scholar 

  • Bergeron H, Labbe D, Turmel C, Lau PC (1998) Cloning, sequence and expression of a linear plasmid-based and a chromosomal homolog of chloroacetaldehyde dehydrogenase-encoding genes in Xanthobacter autotrophicus GJ10. Gene 19:9–18

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cannio R, Rossi M, Bartolucci S (1994) A few amino acid substitutions are responsible for the higher thermostability of a novel NAD+-dependent bacillar alcohol dehydrogenase. Eur J Biochem 222:345–352

    Article  PubMed  CAS  Google Scholar 

  • Cheng LY, Lek LH (1992) Inhibition of alcohol dehydrogenases by thiol compounds. FEBS Lett 300:251–253

    Article  PubMed  CAS  Google Scholar 

  • Coker JA, Sheridan PP, Curtze JL, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482

    Article  PubMed  CAS  Google Scholar 

  • Drum DE, Harrison JH 4th, Li TK, Bethune JL,Vallee BL (1967) Structural and functional zinc in horse liver alcohol dehydrogenase. Proc Natl Acad Sci USA 57:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Eklund H, Plapp BV, Samama JP, Branden CI (1982) Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase. J Biol Chem 257:14349–14358

    PubMed  CAS  Google Scholar 

  • Esaki N, Shimoi H, Nakajima N, Ohshima T, Tanaka H, Soda K (1989) Enzymatic in situ determination of stereospecificity of NAD-dependent dehydrogenases. J Biol Chem 264:9750–9752

    PubMed  CAS  Google Scholar 

  • Fan F, Lorenzen JA, Plapp BV (1991) An aspartate residue in yeast alcohol dehydrogenase I determines the specificity for coenzyme. Biochemistry 30:6397–6401

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev 130–132:200–208

    Article  CAS  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S (2002) Extremophiles: developments of their special functions and potential resources. J Biosci Bioeng 94:518–525

    PubMed  CAS  Google Scholar 

  • Guagliardi A, Martino M, Iaccarino I, Rosa MDe, Rossi M, Bartolucci S (1996) Purification and characterization of the alcohol dehydrogenase from a novel strain of Bacillus stearothermophilus growing at 70 degrees C. Int J Biochem Cell Biol 28:239–246

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa H, Kamiya N, Kawarabayashi Y, Nagamune T (2004) Properties of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix K1. J Biosci Bioeng 97:202–206

    PubMed  CAS  Google Scholar 

  • Innis MA, Myambo KB, Gelfand DH, Brow MAD (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci USA 85:9436–9440

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Hoog JO, Lindstrom HB, Vallee BL (1987) Mammalian alcohol dehydrogenases of separate classes: intermediates between different enzymes and intraclass isozymes. Proc Natl Acad Sci USA 84:2580–2584

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • LeBrun LA, Park DH, Ramaswamy S, Plapp BV (2004) Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase. Biochemistry 43:3014–3026

    Article  PubMed  CAS  Google Scholar 

  • Leskovac V, Trivic S, Pericin D (2002) The three zinc-containing alcohol dehydrogenases from baker’s yeast, Saccharomyces cerevisiae. FEMS Yeast Res 2:481–494

    PubMed  CAS  Google Scholar 

  • Li D, Stevenson KJ (1997) Purification and sequence analysis of a novel NADP(H)-dependent type III alcohol dehydrogenase from Thermococcus strain AN1. J Bacteriol 179:4433–4437

    PubMed  CAS  Google Scholar 

  • Liang ZX, Lee T, Resing KA, Ahn NG, Klinman JP (2004a) Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase. Proc Natl Acad Sci USA 101:9556–9561

    Article  CAS  Google Scholar 

  • Liang ZX, Tsigos I, Lee T, Bouriotis V, Resing KA, Ahn NG, Klinman JP (2004b) Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophilic homologue. Biochemistry 43:14676–14683

    Article  CAS  Google Scholar 

  • Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revising the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10

    PubMed  CAS  Google Scholar 

  • Nakajima N, Nakamura K, Esaki N, Tanaka H, Soda K (1989) Enzymatic in situ analysis by 1H-NMR of the hydrogen transfer stereospecificity of NAD(P)+-dependent dehydrogenases. J Biochem 106:515–517

    PubMed  CAS  Google Scholar 

  • Nogi Y, Soda K, Oikawa T (2005) Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. Syst Appl Microbiol 28:310–315

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Soda K (1979) Purification and properties of alanine dehydrogenase from Bacillus sphaericus. Eur J Biochem 100:29–30

    Article  Google Scholar 

  • Ohshima T, Sakane M, Yamazaki T, Soda K (1990) Thermostable alanine dehydrogenase from thermophilic Bacillus sphaericus DSM462: purification, characterization and kinetic mechanism. Eur J Biochem 191:715–720

    Article  PubMed  CAS  Google Scholar 

  • Oikawa T, Yamanaka K, Kazuoka T, Kanzawa N, Soda K (2001) Psychrophilic valine dehydrogenase of the antarctic psychrophile, Cytophaga sp. KUC-1: purification, molecular characterization and expression. Eur J Biochem 268:4375–4383

    Article  PubMed  CAS  Google Scholar 

  • Peretz M, Bogin O, Keinan E, Burstein Y (1993) Stereospecificity of hydrogen transfer by the NADP-linked alcohol dehydrogenase from the thermophilic bacterium Thermoanaerobium brockii. Int J Pept Protein Res 42:490–495

    Article  PubMed  CAS  Google Scholar 

  • Priefert H, Kruger N, Jendrossek D, Schmidt B, Steinbuchel A (1992) Identification and molecular characterization of the gene coding for acetaldehyde dehydrogenase II (acoD) of Alcaligenes eutrophus. J Bacteriol 174:899–907

    PubMed  CAS  Google Scholar 

  • Radianingtyas H, Wright PC (2003) Alcohol dehydrogenase from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microb Rev 27:593–616

    Article  CAS  Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. In: Scheper T (ed) Advances in biochemical engineering biotechnology, vol. 61, Springer, Berlin Heidelberg New York, pp 1–21

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn, Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sekhar VC, Plapp BV (1988) Mechanism of binding of horse liver alcohol dehydrogenase and nicotinamide adenine dinucleotide. Biochemistry 27:5082–5088

    Article  PubMed  CAS  Google Scholar 

  • Svingor A, Kardos J, Hajdu I, Nemeth A, Zavodszky P (2001) A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs. J Biol Chem 276:28121–28125

    Article  PubMed  CAS  Google Scholar 

  • Theorell H, Chance B (1951) Liver alcohol dehydrogenase. II. Kinetics of the compound of horse-liver alcohol dehydrogenase and reduced diphospho pyridene nucleotide. Acta Chem Scand 5:1127–1144

    Article  CAS  Google Scholar 

  • Tsigos I, Velonia K, Smonou I, Bouriotis V (1998) Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Eur J Biochem 254:356–362

    Article  PubMed  CAS  Google Scholar 

  • Tulchin N, Ornstein L, Davis BJ (1976) A microgel system for disc electrophoresis. Anal Biochem 72:485–490

    Article  PubMed  CAS  Google Scholar 

  • Velonia K, Tsigos I, Bouriotis V, Smonou I (1999) Stereospecificity of hydrogen transfer by the NAD(+)-linked alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Bioorg Med Chem Lett 9:65–68

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Weinhold EG, Glasfeld A, Ellington AD, Benner SA (1991) Structural determinants of stereospecificity in yeast alcohol dehydrogenase. Proc Natl Acad Sci USA 88:8420–8424

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann M, Weilmeier D, Dineen SS, Ralyea R, Boor KJ (2000) Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl Environ Microbiol 66:2085–2095

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka Y, Kazuoka T, Yoshida M, Yamanaka K, Oikawa T, Soda K (2002) Thermostable aldehyde dehydrogenase from psychrophile, Cytophaga sp. KUC-1: enzymological characteristics and functional properties. Biochem Biophys Res Commun 298:632–637

    Article  PubMed  CAS  Google Scholar 

  • Yumoto I, Iwata H, Sawabe T, Ueno K, Ichise N, Matsuyama H, Okuyama H, Kawasaki K (1999) Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhitits high catalase activity. Appl Environ Microbiol 65:67–72

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, Grant-in-Aid for Scientific Research (C), 2004, No.16550150, and the High-Tech Research Center project for Private Universities, matching fund subsidy from MEXT (2002–2006), and the Kansai University Special Research Fund (2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadao Oikawa.

Additional information

Communicated by K. Horikoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazuoka, T., Oikawa, T., Muraoka, I. et al. A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 11, 257–267 (2007). https://doi.org/10.1007/s00792-006-0034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0034-1

Keywords

Navigation