Skip to main content
Log in

AMP-forming acetyl-CoA synthetase from the extremely halophilic archaeon Haloarcula marismortui: purification, identification and expression of the encoding gene, and phylogenetic affiliation

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Halophilic archaea activate acetate via an (acetate)-inducible AMP-forming acetyl-CoA synthetase (ACS), (Acetate + ATP + CoA → Acetyl-CoA + AMP + PPi). The enzyme from Haloarcula marismortui was purified to homogeneity. It constitutes a 72-kDa monomer and exhibited a temperature optimum of 41°C and a pH optimum of 7.5. For optimal activity, concentrations between 1 M and 1.5 M KCl were required, whereas NaCl had no effect. The enzyme was specific for acetate (100%) additionally accepting only propionate (30%) as substrate. The kinetic constants were determined in both directions of the reaction at 37°C. Using the N-terminal amino acid sequence an open reading frame — coding for a 74 kDa protein — was identified in the partially sequenced genome of H. marismortui. The function of the ORF as acs gene was proven by functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies, following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione and substrates. Refolding was dependent on salt concentrations of at least 2 M KCl. The recombinant enzyme showed almost identical molecular and catalytic properties as the native enzyme. Sequence comparison of the Haloarcula ACS indicate high similarity to characterized ACSs from bacteria and eukarya and the archaeon Methanosaeta. Phylogenetic analysis of ACS sequences from all three domains revealed a distinct archaeal cluster suggesting monophyletic origin of archaeal ACS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aceti DJ, Ferry JG (1988) Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis. J Biol Chem 263:15444–15448

    Google Scholar 

  • Bonete MJ, Pire C, Llorca FI, Camacho ML (1996) Glucose dehydrogenase from the halophilic Archaeon Haloferax mediterranei: enzyme purification, characterisation and N-terminal sequence. FEBS Lett 383:227–229

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Bräsen C, Schönheit P (2001) Mechanisms of acetate formation and acetate activation in halophilic archaea. Arch Microbiol 175:360–368 (Erratum, 180:504, 2003)

    Google Scholar 

  • Bräsen C, Schönheit P (2004) Unusual ADP-forming acetyl-coenzyme A synthetases from the mesophilic halophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Arch Microbiol 182:277–287

    Google Scholar 

  • Connaris H, Chaudhuri JB, Danson MJ, Hough DW (1999) Expression, reactivation, and purification of enzymes from Haloferax volcanii in Escherichia coli. Biotechnol Bioeng 64:38–45

    Article  CAS  PubMed  Google Scholar 

  • Ferrer J, Perez-Pomares F, Bonete MJ (1996) NADP-glutamate dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, N-terminal sequence and stability. FEMS Microbiol Lett 141:59–63

    Article  CAS  PubMed  Google Scholar 

  • Fujino T, Kondo J, Ishikawa M, Morikawa K, Yamamoto TT (2001) Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem 276:11420–11426

    Google Scholar 

  • Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122

    Google Scholar 

  • Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC (2003) The 1.75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42:2866–2873

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Yamamoto J, Okamura M, Fujino T, Takahashi S, Takeuchi K, Osborne TF, Yamamoto TT, Ito S, Sakai J (2001) Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1. J Biol Chem 276:34259–34269

    Google Scholar 

  • Ishikawa M, Fujino T, Sakashita H, Morikawa K, Yamamoto T (1995) Kinetic properties and structural characterization of highly purified acetyl-CoA synthetase from bovine heart and tissue distribution of the enzyme in rat tissues. Tohoku J Exp Med 175:55–67

    CAS  PubMed  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate: a comparasion in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Rev 88:181–198

    Article  CAS  Google Scholar 

  • Jogl G, Tong L (2004) Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP. Biochemistry 43:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Johnsen U, Schönheit P (2004) Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J Bacteriol 186:6198–6207

    Article  CAS  PubMed  Google Scholar 

  • Karan D, David JR, Capy P (2001) Molecular evolution of the AMP-forming acetyl-CoA synthetase. Gene 265:95–101

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Tishel R, Eisenbach M, Wolfe AJ (1995) Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 177:2878–2886

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Luong A, Hannah VC, Brown MS, Goldstein JL (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275:26458–26466

    Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Blanco H, Reglero A, Fernandez-Valverde M, Ferrero MA, Moreno MA, Penalva MA, Luengo JM (1992) Isolation and characterization of the acetyl-CoA synthetase from Penicillium chrysogenum. Involvement of this enzyme in the biosynthesis of penicillins. J Biol Chem 267:5474–5481

    Google Scholar 

  • Meyer C, Schmid R, Scriba PC, Wehling M (1996) Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur J Biochem 239:726–731

    Article  CAS  PubMed  Google Scholar 

  • Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum. Arch Microbiol 128:248–252

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1995) Uptake and turnover of acetate in hypersaline environments. FEMS Microbiol Ecol 18:75–85

    Article  CAS  Google Scholar 

  • Oren A, Ginzburg M, Ginzburg BZ, Hochstein LI, Volcani BE (1990) Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol 40:209–210

    CAS  PubMed  Google Scholar 

  • O’Sullivan J, Ettlinger L (1976) Characterization of the acetyl-CoA synthetase of Acetobacter aceti. Biochim Biophys Acta 450:410–417

    CAS  PubMed  Google Scholar 

  • Sanchez LB, Galperin MY, Müller M (2000) Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (nucleoside diphosphate-forming). J Biol Chem 275:5794–5803

    Google Scholar 

  • Schaegger H, von Jagow G (1987) Tricine-sodium-dodecylsulfate-polyacrylamide gel electrophoresis for the separations of proteins in the range from 1–100 kDa. Anal Biochem 166:368–379

    CAS  PubMed  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    CAS  PubMed  Google Scholar 

  • Serrano JA, Bonete MJ (2001) Sequencing, phylogenetic and transcriptional analysis of the glyoxylate bypass operon (ace) in the halophilic archaeon Haloferax volcanii. Biochim Biophys Acta 1520:154–162

    CAS  PubMed  Google Scholar 

  • Serrano JA, Camacho M, Bonete MJ (1998) Operation of glyoxylate cycle in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax volcanii. FEBS Lett 434:13–16

    Article  CAS  PubMed  Google Scholar 

  • Smith JS et al (2000) A phylogenetically conserved NAD+ -dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97:6658–6663

    Article  CAS  PubMed  Google Scholar 

  • Srere PA, Brazil H, Gonen L (1963) The citrate condensing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem Scand 17:129–134

    Google Scholar 

  • Starai VJ, Escalante-Semerena JC (2004a) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61:2020–2030

    Article  CAS  Google Scholar 

  • Starai VJ, Escalante-Semerena JC (2004b) Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J Mol Biol 340:1005–1012

    Article  CAS  Google Scholar 

  • Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392

    Article  CAS  PubMed  Google Scholar 

  • Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC (2003) Short-Chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545–555

    CAS  PubMed  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Uhrigshardt H, Walden M, John H, Petersen A, Anemüller S (2002) Evidence for an operative glyoxylate cycle in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. FEBS Lett 513:223–229

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto J, Ikeda Y, Iguchi H, Fujino T, Tanaka T, Asaba H, Iwasaki S, Ioka RX, Kaneko IW, Magoori K, Takahashi S, Mori T, Sakaue H, Kodama T, Yanagisawa M, Yamamoto TT, Ito S, Sakai J (2004) A Krüppel-like factor KLF15 contributes fasting-induced transcriptional activation of mitochondrial acetyl-CoA synthetase gene AceCS2. J Biol Chem 279:16954–16962

    Google Scholar 

  • Zeiher CA, Randall DD (1991) Spinach leaf acetyl-coenzyme A syntehtase: Purification and characterization. Plant Physiol 96:382–389

    Google Scholar 

  • Zhang P, Ng WV, DasSarma S (2003) Personal communication. http://zdna2.umbi.umd.edu, NSF grant reference (MCB-0135595)

Download references

Acknowledgements

We thank Dr. R. Schmid (Osnabrück, Germany) for N-terminal amino acid sequencing of H. marismortui ACS. We also thank Dr. S. DasSarma for getting access to the H. marismortui genome data at the UMBI web site http://zdna2.umbi.umd.edu/cgi-bin/blast/blast.pl and the web site URL http://zdna2.umbi.umd.edu/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schönheit.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bräsen, C., Schönheit, P. AMP-forming acetyl-CoA synthetase from the extremely halophilic archaeon Haloarcula marismortui: purification, identification and expression of the encoding gene, and phylogenetic affiliation. Extremophiles 9, 355–365 (2005). https://doi.org/10.1007/s00792-005-0449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0449-0

Keywords

Navigation