Skip to main content

Advertisement

Log in

Modifiable factors associated with cognitive performance in Chinese adolescents: a national environment-wide association study

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Growing evidence exists about the candidate factors of childhood cognitive performance, but mainly limited to single-exposure studies. We sought to systematically and simultaneously identify and validate a wide range of potential modifiable factors for childhood cognitive performance. We used data from five waves of data from the China Family Panel Studies (CFPS-2010, 2012, 2014, 2016 and 2018). Our analytical sample was restricted to those children aged 2–5 at baseline with valid exposure information. A total of 80 modifiable factors were identified. Childhood cognitive performance was assessed using vocabulary and mathematics test at wave 5. We used an environment-wide association study (EnWAS) to screen all exposure-outcome associations independently and used the least absolute shrinkage and selection operator (LASSO) variable selection algorithm to identify factors associated with cognitive performance. Multivariable linear model was then used to evaluate causal relationships between identified factors and cognitive performance. Of the 1305 participants included in the study (mean ± SD, 3.5 ± 1.1 years age at baseline, 45.1% girls). Eight factors were retained in the LASSO regression analysis. Six factors across community characteristics (percentage of poverty in the community; percentage of children in the community), household characteristics (family size), child health and behaviors (mobile internet access), parenting behaviors and cognitive enrichment (parental involvement in child’ s education), and parental wellbeing (paternal happiness) domains were significantly associated with childhood cognition. Using a three-stage approach, this study validates several actionable targets for improving childhood cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from https://opendata.pku.edu.cn/dataset.xhtml?persistentId=doi:10.18170/DVN/45LCSO with application.

Abbreviations

SES:

Socioeconomic status

EnWAS:

Environment-wide association studies

GWAS:

Genome wide association study

CFPS:

China family panel studies

LASSO:

Least absolute shrinkage and selection operator

ISEI:

International socio-economic index of occupational status

PIAT:

Peabody individual achievement test

AFQT:

Armed forces qualifying test

SD:

Standard deviation

CI:

Confidence interval

References

  1. Batty GD, Deary IJ (2004) Early life intelligence and adult health. BMJ 329(7466):585–586. https://doi.org/10.1136/bmj.329.7466.585

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kumpulainen SM, Heinonen K, Pesonen AK et al (2017) Childhood cognitive ability and physical activity in young adulthood. Health Psychol 36(6):587–597. https://doi.org/10.1037/hea0000493

    Article  PubMed  Google Scholar 

  3. Østensen AB, Skarbø AB, Sanengen T, Line PD, Almaas R (2021) Impaired neurocognitive performance in children after liver transplantation. J Pediatr S0022–3476(21):01240–01243. https://doi.org/10.1016/j.jpeds.2021.12.033

    Article  Google Scholar 

  4. Deary IJ (2012) Intelligence. Annu Rev Psychol 63(1):453–482. https://doi.org/10.1146/annurev-psych-120710-100353

    Article  PubMed  Google Scholar 

  5. Grantham-McGregor S, Cheung YB, Cueto S et al (2007) Developmental potential in the first 5 years for children in developing countries. Lancet 369(9555):60–70. https://doi.org/10.1016/S0140-6736(07)60032-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Giangrande EJ, Beam CR, Finkel D, Davis DW, Turkheimer E (2022) Genetically informed, multilevel analysis of the Flynn Effect across four decades and three WISC versions. Child Dev 93(1):e47–e58. https://doi.org/10.1111/cdev.13675

    Article  PubMed  Google Scholar 

  7. Lee KS, Kim KN, Ahn YD et al (2021) Prenatal and postnatal exposures to four metals mixture and IQ in 6 year-old children: a prospective cohort study in South Korea. Environ Int 157:106798. https://doi.org/10.1016/j.envint.2021.106798

    Article  CAS  PubMed  Google Scholar 

  8. Lewis SJ, Koenen KC, Ambler A et al (2021) Unravelling the contribution of complex trauma to psychopathology and cognitive deficits: a cohort study. Br J Psychiatry 219(2):448–455. https://doi.org/10.1192/bjp.2021.57

    Article  PubMed  PubMed Central  Google Scholar 

  9. Scarr-Salapatek S (1971) Race, social class, and IQ. Science 174(4016):1285–1295. https://doi.org/10.1126/science.174.4016.1285

    Article  CAS  PubMed  Google Scholar 

  10. Tucker-Drob EM, Briley DA, Harden KP (2013) Genetic and environmental influences on cognition across development and context. Curr Dir Psychol Sci 22(5):349–355. https://doi.org/10.1177/0963721413485087

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13(3):330–338. https://doi.org/10.1016/S1474-4422(13)70278-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bitsko RH, Holbrook JR, Robinson LR et al (2016) Health care, family, and community factors associated with mental, behavioral, and developmental disorders in early childhood—United States, 2011–2012. MMWR Morb Mortal Wkly Rep 65(9):221–226. https://doi.org/10.15585/mmwr.mm6509a1

    Article  PubMed  Google Scholar 

  13. Reuben A, Arseneault L, Belsky DW et al (2019) Residential neighborhood greenery and children’s cognitive development. Soc Sci Med 230:271–279. https://doi.org/10.1016/j.socscimed.2019.04.029

    Article  PubMed  PubMed Central  Google Scholar 

  14. Granziera F, Guzzardi MA, Iozzo P (2021) Associations between the Mediterranean diet pattern and weight status and cognitive development in preschool children. Nutrients 13(11):3723. https://doi.org/10.3390/nu13113723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Northstone K, Joinson C, Emmett P, Ness A, Paus T (2012) Are dietary patterns in childhood associated with IQ at 8 years of age? A population-based cohort study. J Epidemiol Community Health 66(7):624–628. https://doi.org/10.1136/jech.2010.111955

    Article  PubMed  Google Scholar 

  16. Miller AB, Machlin L, McLaughlin KA, Sheridan MA (2021) Deprivation and psychopathology in the Fragile families study: a 15 year longitudinal investigation. J Child Psychol Psychiatry 62(4):382–391. https://doi.org/10.1111/jcpp.13260

    Article  PubMed  Google Scholar 

  17. Young JC, Widom CS (2014) Long-term effects of child abuse and neglect on emotion processing in adulthood. Child Abuse Negl 38(8):1369–1381. https://doi.org/10.1016/j.chiabu.2014.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bachmann CJ, Beecham J, O’Connor TG, Briskman J, Scott S (2022) A good investment: longer-term cost savings of sensitive parenting in childhood. J Child Psychol Psychiatry 63(1):78–87. https://doi.org/10.1111/jcpp.13461

    Article  PubMed  Google Scholar 

  19. Wade M, Carroll D, Fox NA, Zeanah CH, Nelson CA (2021) Associations between early psychosocial deprivation, cognitive and psychiatric morbidity, and risk-taking behavior in adolescence. J Clin Child Adolesc Psycholy 51:1–14. https://doi.org/10.1080/15374416.2020.1864737

    Article  Google Scholar 

  20. Darlow BA, Woodward LJ, Levin KJ, Melzer T, Horwood LJ (2020) Perinatal and childhood predictors of general cognitive outcome at 28 years in a very-low-birthweight national cohort. Dev Med Child Neurol 62(12):1423–1428. https://doi.org/10.1111/dmcn.14649

    Article  PubMed  Google Scholar 

  21. Pearce A, Sawyer ACP, Chittleborough CR, Mittinty MN, Law C, Lynch JW (2016) Do early life cognitive ability and self-regulation skills explain socio-economic inequalities in academic achievement? An effect decomposition analysis in UK and Australian cohorts. Soc Sci Med 165:108–118. https://doi.org/10.1016/j.socscimed.2016.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ahun MN, Geoffroy MC, Herba CM et al (2017) Timing and chronicity of maternal depression symptoms and children’s verbal abilities. J Pediatr 190:251–257. https://doi.org/10.1016/j.jpeds.2017.07.007

    Article  PubMed  Google Scholar 

  23. Evans J, Melotti R, Heron J et al (2012) The timing of maternal depressive symptoms and child cognitive development: a longitudinal study. J Child Psychol Psychiatry 53(6):632–640. https://doi.org/10.1111/j.1469-7610.2011.02513.x

    Article  PubMed  Google Scholar 

  24. Hair NL, Hanson JL, Wolfe BL, Pollak SD (2015) Association of child poverty, brain development, and academic achievement. JAMA Pediatr 169(9):822–829. https://doi.org/10.1001/jamapediatrics.2015.1475

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rowe C, Gunier R, Bradman A et al (2016) Residential proximity to organophosphate and carbamate pesticide use during pregnancy, poverty during childhood, and cognitive functioning in 10 year-old children. Environ Res 150:128–137. https://doi.org/10.1016/j.envres.2016.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi KW, Stein MB, Nishimi KM et al (2020) An exposure-wide and Mendelian randomization approach to identifying modifiable factors for the prevention of depression. Am J Psychiatry 177(10):944–954. https://doi.org/10.1176/appi.ajp.2020.19111158

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patel CJ, Bhattacharya J, Butte AJ (2010) An environment-wide association study (EnWAS) on type 2 diabetes mellitus. PLoS ONE 5(5):e10746. https://doi.org/10.1371/journal.pone.0010746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vermeulen R, Schymanski EL, Barabási AL, Miller GW (2020) The exposome and health: Where chemistry meets biology. Science 367(6476):392–396. https://doi.org/10.1126/science.aay3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amiri M, Lamballais S, Geenjaar E et al (2020) Environment-wide association study (En WAS) of prenatal and perinatal factors associated with autistic traits: a population-based study. Autism Res 13(9):1582–1600. https://doi.org/10.1002/aur.2372

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vrijheid M, Fossati S, Maitre L et al (2020) Early-Life environmental exposures and childhood obesity: an exposome-wide approach. Environ Health Perspect 128(6):67009. https://doi.org/10.1289/EHP5975

    Article  CAS  PubMed  Google Scholar 

  31. Hu H, Zhao J, Savitz DA, Prosperi M, Zheng Y, Pearson TA (2020) An external exposome-wide association study of hypertensive disorders of pregnancy. Environ Int 141:105797. https://doi.org/10.1016/j.envint.2020.105797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jedynak P, Maitre L, Guxens M et al (2021) Prenatal exposure to a wide range of environmental chemicals and child behaviour between 3 and 7 years of age—an exposome-based approach in 5 European cohorts. Sci Total Environ 763:144115. https://doi.org/10.1016/j.scitotenv.2020.144115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nieuwenhuijsen MJ, Agier L, Basagaña X et al (2019) Influence of the urban exposome on birth weight. Environ Health Perspect 127(4):47007. https://doi.org/10.1289/EHP3971

    Article  PubMed  Google Scholar 

  34. LeWinn K, Bush NR, Batra A, Tylavsky F, Rehkopf D (2020) Identification of modifiable social and behavioral factors associated with childhood cognitive performance. JAMA Pediatr 174(11):1063–1072. https://doi.org/10.1001/jamapediatrics.2020.2904

    Article  PubMed  Google Scholar 

  35. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

  36. Xie Y, Hu JW (2014) An introduction to the China family panel studies (CFPS). Chinese Sociol Rev 47:3–29. https://doi.org/10.2753/CSA2162-0555470101

    Article  Google Scholar 

  37. Huang G, Xie Y, Xu H (2015) Cognitive ability: social correlates and consequences in contemporary China. Chin Sociol Rev 47(4):287–313. https://doi.org/10.1080/21620555.2015.1032161

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cattell RB (1963) Theory of fluid and crystallized intelligence: a critical experiment. J Educ Psychol 54(1):1. https://doi.org/10.1037/h0046743

    Article  Google Scholar 

  39. Cunha F, Heckman J (2007) The technology of skill formation. Am Econ Rev 97(2):31–47. https://doi.org/10.1257/aer.97.2.31

    Article  Google Scholar 

  40. Todd PE, Wolpin KI (2007) The production of cognitive achievement in children: home, school, and racial test score gaps. J Hum Cap 1(1):91–136. https://doi.org/10.1086/526401

    Article  Google Scholar 

  41. Manuelli RE, Seshadri A (2014) Human capital and the wealth of nations†. Am Econ Rev 104(9):2736–2762. https://doi.org/10.1257/aer.104.9.2736

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perng W, Tang L, Song PXK, Tellez-Rojo MM, Cantoral A, Peterson KE (2019) Metabolomic profiles and development of metabolic risk during the pubertal transition: a prospective study in the ELEMENT Project. Pediatr Res 85(3):262–268. https://doi.org/10.1038/s41390-018-0195-5

    Article  CAS  PubMed  Google Scholar 

  43. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol 58:267–288

    Article  Google Scholar 

  44. Hong YA, Zhou Z, Fang Y, Shi L (2017) The digital divide and health disparities in China: evidence from a National survey and policy implications. J Med Internet Res 19(9):e317. https://doi.org/10.2196/jmir.7786

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bonfadelli H (2002) The Internet and knowledge gaps: a theoretical and empirical investigation. Eur J Commun 17(1):65–84. https://doi.org/10.1177/0267323102017001607

    Article  Google Scholar 

  46. Parr N (2020) A new measure of fertility replacement level in the presence of positive net immigration. Eur J Popul 37(1):243–262. https://doi.org/10.1007/s10680-020-09566-w

    Article  PubMed  PubMed Central  Google Scholar 

  47. Morgan SP, Taylor MG (2006) Low fertility at the turn of the 20st Century. Annu Rev Sociol 32:375–399. https://doi.org/10.1146/annurev.soc.31.041304.122220

    Article  PubMed  PubMed Central  Google Scholar 

  48. McCoy DC, Peet ED, Ezzati M et al (2016) Early childhood developmental status in low- and middle-income Countries: National, regional, and global prevalence estimates using predictive modeling. PLoS Med 13(6):e1002034. https://doi.org/10.1371/journal.pmed.1002034

    Article  PubMed  PubMed Central  Google Scholar 

  49. Torres JM, Yahirun JJ, Sheehan C, Ma M, Sáenz J (2021) Adult child socio-economic status disadvantage and cognitive decline among older parents in Mexico. Soc Sci Med 279:113910. https://doi.org/10.1016/j.socscimed.2021.113910

    Article  PubMed  PubMed Central  Google Scholar 

  50. Blake J (1989) Family size and achievement. University of California Press, Berkeley, CA

    Book  Google Scholar 

  51. Downey DB (1995) When bigger is not better: family size, parental resources, and children’s educational performance. Am Sociol Rev 60:746–761. https://doi.org/10.2307/2096320

    Article  Google Scholar 

  52. Guo G, VanWey LK (1999) Sibship size and intellectual development: is the relationship causal? Am Sociol Rev 64:169–187. https://doi.org/10.2307/2657524

    Article  Google Scholar 

  53. Rodgers JL, Cleveland HH, van den Oord E, Rowe DC (2000) Resolving the debate over birth order, family size, and intelligence. Am Psychol 55(6):599–612. https://doi.org/10.1037//0003-066x.55.6.599

    Article  CAS  PubMed  Google Scholar 

  54. Sandberg J, Rafail P (2014) Family size, cognitive outcomes, and familial interaction in stable, two-parent families: United States, 1997–2002. Demography 51(5):1895–1931. https://doi.org/10.1007/s13524-014-0331-8

    Article  PubMed  Google Scholar 

  55. Takeuchi H, Taki Y, Hashizume H et al (2015) The impact of parent-child interaction on brain structures: cross-sectional and longitudinal analyses. J Neurosci 35(5):2233–2245. https://doi.org/10.1523/JNEUROSCI.0598-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kobayashi LC, Glymour MM, Kahn K et al (2017) Childhood deprivation and later-life cognitive function in a population-based study of older rural South Africans. Soc Sci Med 190:20–28. https://doi.org/10.1016/j.socscimed.2017.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lund T, Pavlova M, Kennedy M et al (2021) Father- and mother-child reminiscing about past pain and young children’s cognitive skills. J Pediatr Psychol 46(7):757–767. https://doi.org/10.1093/jpepsy/jsab006

    Article  PubMed  Google Scholar 

  58. Rollè L, Gullotta G, Trombetta T et al (2019) Father involvement and cognitive development in early and middle childhood: a systematic review. Front Psychol 10:2405. https://doi.org/10.3389/fpsyg.2019.02405

    Article  PubMed  PubMed Central  Google Scholar 

  59. Roberts JP, Satherley RM, Iles J (2022) It’s time to talk fathers: The impact of paternal depression on parenting style and child development during the COVID-19 pandemic. Front Psychol 13:1044664. https://doi.org/10.3389/fpsyg.2022.1044664

    Article  PubMed  PubMed Central  Google Scholar 

  60. El Marroun H, Zou R, Muetzel RL et al (2018) Prenatal exposure to maternal and paternal depressive symptoms and white matter microstructure in children. Depress Anxiety 35(4):321–329. https://doi.org/10.1002/da.22722

    Article  PubMed  Google Scholar 

  61. Evans GW (2004) The environment of childhood poverty. Am Psychol 59(2):77–92. https://doi.org/10.1037/0003-066X.59.2.77

    Article  PubMed  Google Scholar 

  62. Rutter M (2012) Achievements and challenges in the biology of environmental effects. Proc Natl Acad Sci USA 109(Suppl 2):17149–17153. https://doi.org/10.1073/pnas.1121258109

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hackman DA, Farah MJ, Meaney MJ (2010) Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci 11(9):651–659. https://doi.org/10.1038/nrn2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kishiyama MM, Boyce WT, Jimenez AM, Perry LM, Knight RT (2009) Socioeconomic disparities affect prefrontal function in children. J Cogn Neurosci 21(6):1106–1115. https://doi.org/10.1162/jocn.2009.21101

    Article  PubMed  Google Scholar 

  65. Perry RE, Finegood ED, Braren SH et al (2019) Developing a neurobehavioral animal model of poverty: drawing cross-species connections between environments of scarcity-adversity, parenting quality, and infant outcome. Dev Psychopathol 31(2):399–418. https://doi.org/10.1017/S095457941800007X

    Article  PubMed  Google Scholar 

  66. Yoshikawa H, Aber JL, Beardslee WR (2012) The effects of poverty on the mental, emotional, and behavioral health of children and youth: implications for prevention. Am Psychol 67(4):272–284. https://doi.org/10.1037/a0028015

    Article  PubMed  Google Scholar 

  67. Aikens NL, Barbarin O (2008) Socioeconomic differences in reading trajectories: the contribution of family, neighborhood, and school contexts. J Educ Psychol 100(2):235–251. https://doi.org/10.1037/0022-0663.100.2.235

    Article  Google Scholar 

  68. Lean RE, Paul RA, Smyser CD, Rogers CE (2018) Maternal intelligence quotient (IQ) predicts IQ and language in very preterm children at age 5 years. J Child Psychol Psychiatry 59(2):150–159. https://doi.org/10.1111/jcpp.12810

    Article  PubMed  Google Scholar 

  69. Melhuish EC, Phan MB, Sylva K, Sammons P, Siraj-Blatchford I, Taggart B (2008) Effects of the home learning environment and preschool center experience upon literacy and numeracy development in early primary school. J Soc Issues 64(1):95–114. https://doi.org/10.1111/j.1540-4560.2008.00550.x

    Article  Google Scholar 

  70. Vygotsky LS (1978) Mind in society. Harvard University Press, Cambridge, MA

    Google Scholar 

  71. Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J (2009) Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124(2):717–728. https://doi.org/10.1542/peds.2008-2816

    Article  PubMed  Google Scholar 

  72. Cassidy-Bushrow AE, Sitarik AR, Havstad S et al (2017) Burden of higher lead exposure in African-Americans starts in utero and persists into childhood. Environ Int 108:221–227. https://doi.org/10.1016/j.envint.2017.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Valls-Pedret C, Sala-Vila A, Serra-Mir M et al (2015) Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med 175(7):1094–1103. https://doi.org/10.1001/jamainternmed.2015.1668

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the principal investigators and staff, as well as all the study participants in the China Family Panel Study.

Funding

This work was supported by grant 82173537 & 81872638 from the National Natural Science Foundation of China and grant 1908085J26 from the Natural Science Foundation of Anhui Province for Distinguished Young Scholars (Dr Sun).

Author information

Authors and Affiliations

Authors

Contributions

Dr Sun had full access to all of the data and takes responsibility for the integrity of the data and the accuracy of the data analysis. W and W: contributed equally to this work. Conceptualization: WS, WY, SY, Data curation: WS, WY, SY, Formal analysis: WS, Funding acquisition: SY, Methodology: WS, WY, SY, Software: WS, WY, Supervision: WY, SP, TF, SY, Validation: SP, TF, Visualization: WS, SY, Writing—original draft: WS, WY, Writing—review & editing: WY, SP, TF, SY.

Corresponding author

Correspondence to Ying Sun.

Ethics declarations

Conflict of interest

The authors have no relevant conflicts of interest to disclose.

Ethical approval

The Peking University Biomedical Ethics Review Committee provided ethical approval for the survey (Approval number: IRB00001052-14010). All the participants in CFPS survey were required to subscribe an informed consent form (http://www.isss.pku.edu.cn/cfps/docs/20200615141215123435.pdf, accessed on 12 July 2021) before interview, and all the obtained information from participants was handled voluntarily, confidentially, and anonymously.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

787_2023_2229_MOESM1_ESM.doc

Table S1 Behavioral patterns, anthropometrics, physical and mental health conditions, access to and utilization of health care, and psychosocial factors studied. Table S2 Characteristics of adolescents in follow-up and missing groups from China Family Panel Study (CFPS). Table S3 Multivariate model estimates of associations of 8 modifiable factors identified through LASSO regression analysis with cognitive performance among children and adolescents participating in the China Family Panel Study. Table S4 Associations between each target exposure and the child’s cognitive performance (DOC 287 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Y., Wan, Y. et al. Modifiable factors associated with cognitive performance in Chinese adolescents: a national environment-wide association study. Eur Child Adolesc Psychiatry 33, 1047–1056 (2024). https://doi.org/10.1007/s00787-023-02229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-023-02229-1

Keywords

Navigation