Skip to main content

Advertisement

Log in

Bone quality analysis of jaw bones in individuals with type 2 diabetes mellitus—post mortem anatomical and microstructural evaluation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

With the higher risk of dental implant failure with type 2 diabetes mellitus (T2DM), there is a need to characterize the jaw bones in those individuals. The aim of this post mortem study was to compare jaw bone quality of individuals with T2DM to healthy controls.

Material and methods

Bone cores from the edentulous lower first molar region and the region of mandibular angle were collected from male individuals with T2DM (n = 10, 70.6 ± 4.5 years) and healthy controls (n = 11, 71.5 ± 3.8 years) during autopsy. Within the T2DM, a subgroup treated with oral antidiabetics (OAD) and one on insulin were identified. Bone quality assessment encompassed evaluation of bone microstructure, matrix composition, and cellular activity, using microcomputed tomography (micro-CT), quantitative backscattered electron imaging (qBEI), Raman spectroscopy, and bone histomorphometry.

Results

In the mandibular angle, T2DM showed 51% lower porosity of the lingual cortex (p = 0.004) and 21% higher trabecular thickness (p = 0.008) compared to control. More highly mineralized bone packets were found in the buccal cortex of the mandibular angle in insulin-treated compared to OAD-treated T2DM group (p = 0.034). In the molar region, we found higher heterogeneity of trabecular calcium content in T2DM insulin compared to controls (p = 0.015) and T2DM OAD (p = 0.019). T2DM was associated with lower osteocyte lacunar size in the trabecular bone of the molar region (vs. control p = 0.03).

Conclusions

Alterations in microstructure, mineralization, and osteocyte morphology were determined in jaw bone of individuals with T2DM compared to controls.

Clinical relevance

Future studies will have to verify if the mild changes determined in this study will translate to potential contraindications for dental implant placements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. WHO: Global Report on Diabetes 2017; NCD-RisC https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=A3890983DA4DA8727ABC73AD6167E736?sequence=1. Accessed Nov 2019

  2. NCD Risk Factor Collaboration (NCD-RisC) (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387(10027):1513–1530. https://doi.org/10.1016/S0140-6736(16)00618-8

  3. Naujokat H, Kunzendorf B, Wiltfang J (2016) Dental implants and diabetes mellitus-a systematic review. Int J Implant Dent 2(1):5. https://doi.org/10.1186/s40729-016-0038-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ward NH III, Wainwright DJ (2015) Outcomes research: mandibular fractures in the diabetic population. J Cranio-Maxillofac Surg 44:763–769. https://doi.org/10.1016/j.jcms.2015.09.001

    Article  Google Scholar 

  5. Chrcanovic BR (2014) Fixation of mandibular angle fractures: Clinical studies. Oral Maxillofac Surg 18(2):123–152. https://doi.org/10.1007/s10006-012-0374-1

    Article  PubMed  Google Scholar 

  6. Kudiyirickal MG, Pappachan JM (2015) Diabetes mellitus and oral health. Endocrine. 49(1):27–34. https://doi.org/10.1007/s12020-014-0496-3

    Article  PubMed  Google Scholar 

  7. Singh R, Parihar AS, Vaibhav V, Kumar K, Singh R, Jerry JJ (2020) A 10 years retrospective study of assessment of prevalence and risk factors of dental implants failures. J Family Med Prim Care 9:1617–1619

    Article  Google Scholar 

  8. Chrcanovic BR, Albrektsson T, Wennerberg A (2014) Diabetes and oral implant failure: a systematic review. J Dent Res 93(9):859–867. https://doi.org/10.1177/0022034514538820

    Article  PubMed  PubMed Central  Google Scholar 

  9. Castellanos-Cosano L, Rodriguez-Perez A, Spinato S, Wainwright M, Machuca-Portillo G, Serrera-Figallo MA, Torres-Lagares D (2019) Descriptive retrospective study analyzing relevant factors related to dental implant failure. Med Oral Patol Oral Cir Bucal 24(6):e726–e738. https://doi.org/10.4317/medoral.23082

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marchand F, Raskin A, Dionnes-Hornes A, Barry T, Dubois N, Valéro R, Vialettes B (2012) Dental implants and diabetes: conditions for success. Diabetes Metab 38(1):14–19. https://doi.org/10.1016/j.diabet.2011.10.002

    Article  PubMed  Google Scholar 

  11. Aguilar-Salvatierra A, Calvo-Guirado JL, González-Jaranay M, Moreu G, Delgado-Ruiz RA, Gómez-Moreno G (2016) Peri-implant evaluation of immediately loaded implants placed in esthetic zone in patients with diabetes mellitus type 2: a two-year study. Clin Oral Implants Res 27(2):156–161. https://doi.org/10.1111/clr.12552

    Article  PubMed  Google Scholar 

  12. Eskow CC, Oates TW (2017) Dental implant survival and complication rate over 2 years for individuals with poorly controlled type 2 diabetes mellitus. Clin Implant Dent Relat Res 19(3):423–431. https://doi.org/10.1111/cid.12465

    Article  PubMed  Google Scholar 

  13. Oates TW Jr, Galloway P, Alexander P, Vargas Green A, Huynh-Ba G, Feine J, McMahan CA (2014) The effects of elevated hemoglobin A(1c) in patients with type 2 diabetes mellitus on dental implants: survival and stability at one year. J Am Dent Assoc 145(12):1218–1226. https://doi.org/10.14219/jada.2014.93

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alsaadi G, Quirynen M, Komárek A, van Steenberghe D (2008) Impact of local and systemic factors on the incidence of late oral implant loss. Clin Oral Implants Res 19(7):670–676. https://doi.org/10.1111/j.1600-0501.2008.01534.x

    Article  PubMed  Google Scholar 

  15. Peled M, Ardekian L, Tagger-Green N, Gutmacher Z, Machtei EE (2003) Dental implants in patients with type 2 diabetes mellitus: a clinical study. Implant Dent 12(2):116–122. https://doi.org/10.1097/01.id.0000058307.79029.b1

    Article  PubMed  Google Scholar 

  16. Parihar AS, Madhuri S, Devanna R, Sharma G, Singh R, Shetty K (2020) Assessment of failure rate of dental implants in medically compromised patients. J Family Med Prim Care 9:883–885. https://doi.org/10.4103/jfmpc.jfmpc_989_19

    Article  PubMed  PubMed Central  Google Scholar 

  17. Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis--a review. Head Face Med 10:34. https://doi.org/10.1186/1746-160X-10-34

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oates TW, Huynh-Ba G, Vargas A, Alexander P, Feine J (2013) A critical review of diabetes, glycemic control, and dental implant therapy. Clin Oral Implants Res 24(2):117–127. https://doi.org/10.1111/j.1600-0501.2011.02374.x

    Article  PubMed  Google Scholar 

  19. Saito M, Kida Y, Kato S, Marumo K (2014) Diabetes, collagen, and bone quality. Curr Osteoporos Rep 12(2):181–188. https://doi.org/10.1007/s11914-014-0202-7

    Article  PubMed  Google Scholar 

  20. Palermo A, D'Onofrio L, Buzzetti R, Manfrini S, Napoli N (2017) Pathophysiology of bone fragility in patients with diabetes. Calcif Tissue Int 100(2):122–132. https://doi.org/10.1007/s00223-016-0226-3

    Article  PubMed  Google Scholar 

  21. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL (2017) IOF bone and diabetes working group. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13(4):208–219. https://doi.org/10.1038/nrendo.2016.153

    Article  PubMed  Google Scholar 

  22. Picke AK, Campbell G, Napoli N, Hofbauer LC, Rauner M (2019) Update on the impact of type 2 diabetes mellitus on bone metabolism and material properties. Endocr Connect 8(3):R55–R70. https://doi.org/10.1530/EC-18-0456

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu YY, Xiao E, Graves DT (2015) Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci 7(2):63–72. https://doi.org/10.1038/ijos.2015.2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Milovanovic P, Zimmermann EA, Riedel C, vom Scheidt A, Herzog L, Krause M, Djonic D, Djuric M, Püschel K, Amling M, Ritchie RO, Busse B (2015) Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 45:46–55. https://doi.org/10.1016/j.biomaterials.2014.12.024

    Article  PubMed  Google Scholar 

  25. Ferrato G, Falisi G, Ierardo G, Polimeni A, Di Paolo C (2017) Digital evaluation of occlusal forces: comparison between healthy subjects and TMD patients. Ann Stomatol (Roma) 8(2):79–88. https://doi.org/10.11138/ads/2017.8.2.089

    Article  Google Scholar 

  26. Alrabiah M, Al-Aali KA, Al-Sowygh ZH, Binmahfooz AM, Mokeem SA, Abduljabbar T (2018) Association of advanced glycation end products with peri-implant inflammation in prediabetes and type 2 diabetes mellitus patients. Clin Implant Dent Relat Res 20(4):535–540. https://doi.org/10.1111/cid.12607

    Article  PubMed  Google Scholar 

  27. Javid AZ, Hormoznejad R, Yousefimanesh HA, Haghighi-Zadeh MH, Zakerkish M (2019) Impact of resveratrol supplementation on inflammatory, antioxidant, and periodontal markers in type 2 diabetic patients with chronic periodontitis. Diabetes Metab Syndr 13(4):2769–2774. https://doi.org/10.1016/j.dsx.2019.07.042

    Article  PubMed  Google Scholar 

  28. Mauri-Obradors E, Merlos A, Estrugo-Devesa A, Jané-Salas E, López-López J, Viñas M (2018) Benefits of non-surgical periodontal treatment in patients with type 2 diabetes mellitus and chronic periodontitis: a randomized controlled trial. J Clin Periodontol 45(3):345–353. https://doi.org/10.1111/jcpe.12858

    Article  PubMed  Google Scholar 

  29. Kurşun-Çakmak EŞ, Bayrak S (2018) Comparison of fractal dimension analysis and panoramic-based radiomorphometric indices in the assessment of mandibular bone changes in patients with type 1 and type 2 diabetes mellitus. Oral Surg Oral Med Oral Pathol Oral Radiol 126(2):184–191. https://doi.org/10.1016/j.oooo.2018.04.010

    Article  PubMed  Google Scholar 

  30. Nemtoi A, Ladunca O, Dragan E, Budacu C, Mihai C, Haba D (2013) Quantitative and qualitative bone assessment of the posterior mandible in patients with diabetes mellitus: a cone beam computed tomography study. Rev Med Chir Soc Med Nat Iasi 117(4):1002–1008

    PubMed  Google Scholar 

  31. Bulut E, Baş B, Altunkaynak BZ, Bekçioğlu B, Erdem Koç G, Gönülol E, Önger ME, Kaplan S (2014) Efficacy of Ankaferd Blood Stopper on bone healing in diabetic rats: a stereological and histopathological study. Biotech Histochem 89(7):535–543. https://doi.org/10.3109/10520295.2014.906657

    Article  PubMed  Google Scholar 

  32. Akyol UK, Güngörmüş M (2010) Effect of biostimulation on healing of bone defects in diabetic rats. Photomed Laser Surg 28(3):411–416. https://doi.org/10.1089/pho.2008.2478

    Article  PubMed  Google Scholar 

  33. von Wilmowsky C, Schlegel KA, Baran C, Nkenke E, Neukam FW, Moest T (2016) Peri-implant defect regeneration in the diabetic pig: a preclinical study. J Craniomaxillofac Surg 44(7):827–834. https://doi.org/10.1016/j.jcms.2016.04.002

    Article  Google Scholar 

  34. Goss AN, Sambrook PJ (2013) Diabetes, wound healing and complications: authors’ reply. Aust Dent J 58(4):536–537. https://doi.org/10.1111/adj.12117_2

    Article  PubMed  Google Scholar 

  35. Guja C, Guja L, Miulescu RD (2019) Effect of type 2 diabetes medications on fracture risk. Ann Transl Med 7(20):580. https://doi.org/10.21037/atm.2019.09.51

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang S, Dang H, Huynh W, Sambrook PJ, Goss AN (2013) The healing of dental extraction sockets in patients with type 2 diabetes on oral hypoglycaemics: a prospective cohort. Aust Dent J 58(1):89–93. https://doi.org/10.1111/adj.12029

    Article  PubMed  Google Scholar 

  37. Power DJ, Sambrook PJ, Goss AN (2019) The healing of dental extraction sockets in insulin-dependent diabetic patients: a prospective controlled observational study. Aust Dent J 64(1):111–116. https://doi.org/10.1111/adj.12669

    Article  PubMed  Google Scholar 

  38. Pietschmann P, Patsch JM, Schernthaner G (2010) Diabetes and bone. Horm Metab Res 42(11):763–768. https://doi.org/10.1055/s-0030-1262825

    Article  PubMed  Google Scholar 

  39. Murray CE, Coleman CM (2019) Impact of diabetes mellitus on bone health. Int J Mol Sci 20(19):4873. Published 2019 Sep 30. https://doi.org/10.3390/ijms20194873

    Article  PubMed Central  Google Scholar 

  40. Achemlal L, Tellal S, Rkiouak F, Nouijai A, Bezza A, Derouiche EM, Ghafir D, el Maghraoui A (2005) Bone metabolism in male patients with type 2 diabetes. Clin Rheumatol 24(5):493–496. https://doi.org/10.1007/s10067-004-1070-9

    Article  PubMed  Google Scholar 

  41. Pacios S, Andriankaja O, Kang J, Alnammary M, Bae J, de Brito Bezerra B, Schreiner H, Fine DH, Graves DT (2013) Bacterial infection increases periodontal bone loss in diabetic rats through enhanced apoptosis. Am J Pathol 183(6):1928–1935. https://doi.org/10.1016/j.ajpath.2013.08.017

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yamagishi S (2012) Potential clinical utility of advanced glycation end product cross-link breakers in age- and diabetes-associated disorders. Rejuvenation Res 15(6):564–572. https://doi.org/10.1089/rej.2012.1335

    Article  PubMed  Google Scholar 

  43. Kasahara T, Imai S, Kojima H, Katagi M, Kimura H, Chan L, Matsusue Y (2010) Malfunction of bone marrow-derived osteoclasts and the delay of bone fracture healing in diabetic mice. Bone. 47(3):617–625. https://doi.org/10.1016/j.bone.2010.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud-Werner SL (2008) High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone. 42(6):1122–1130. https://doi.org/10.1016/j.bone.2008.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  45. He B, Li SQ, Wang W, Han P (2004) [Maternal serum lipid at 36-42 weeks’ gestation and their relationship to newborn weight in pregnant women with gestational diabetes mellitus and type 1 and type 2 diabetes mellitus]. Zhonghua Fu Chan Ke Za Zhi 39(10):675–677 (Chinese)

  46. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289(5):E735–E745. https://doi.org/10.1152/ajpendo.00159.2005

    Article  PubMed  Google Scholar 

  47. Tomczyk S, Whitten T, Holzbauer SM, Lynfield R (2018) Combating antibiotic resistance: a survey on the antibiotic-prescribing habits of dentists. Gen Dent 66(5):61–68

    PubMed  Google Scholar 

  48. Sella-Tunis T, Pokhojaev A, Sarig R, O'Higgins P, May H (2018) Human mandibular shape is associated with masticatory muscle force. Sci Rep 8(1):6042. https://doi.org/10.1038/s41598-018-24293-3

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone. 42(3):456–466. https://doi.org/10.1016/j.bone.2007.10.021

    Article  PubMed  Google Scholar 

  50. Image J referenceSchneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry nomenclature committee. J Bone Miner Res 28(1):2–17. https://doi.org/10.1002/jbmr.1805

    Article  PubMed  Google Scholar 

  52. Bernhard A, Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Krause M, Breer S, Püschel K, Djuric M, Amling M, Busse B (2013) Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int 24(10):2671–2680. https://doi.org/10.1007/s00198-013-2374-x

    Article  PubMed  Google Scholar 

  53. Shah FA, Sayardoust S, Thomsen P, Palmquist A (2019) Extracellular matrix composition during bone regeneration in the human dental alveolar socket. Bone. 127:244–249. https://doi.org/10.1016/j.bone.2019.06.003

    Article  PubMed  Google Scholar 

  54. Marin S, Popovic-Pejicic S, Radosevic-Caric B, Trtić N, Tatic Z, Selakovic S (2020) Hyaluronic acid treatment outcome on the post-extraction wound healing in patients with poorly controlled type 2 diabetes: a randomized controlled split-mouth study. Med Oral Patol Oral Cir Bucal 25(2):e154–e160. https://doi.org/10.4317/medoral.23061

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu R, Bal HS, Desta T, Krothapalli N, Alyassi M, Luan Q, Graves DT (2006) Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res 85:510–514. https://doi.org/10.1177/154405910608500606

    Article  PubMed  Google Scholar 

  56. Pacios S, Kang J, Galicia J, Gluck K, Patel H, Ovaydi-Mandel A, Petrov S, Alawi F, Graves DT (2012) Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J 26:1423–1430. https://doi.org/10.1096/fj.11-196279

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xiao E, Mattos M, Vieira GHA, Chen S, Correa JD, Wu Y, Albiero ML, Bittinger K, Graves DT (2017) Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22:120–128. https://doi.org/10.1016/j.chom.2017.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yamamoto M, Yamaguchi T, Nawata K, Yamauchi M, Sugimoto T (2012) Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 97(4):1277–1284. https://doi.org/10.1210/jc.2011-2537

    Article  PubMed  Google Scholar 

  59. Jiajue R, Jiang Y, Wang O, Li M, Xing X, Cui L, Yin J, Xu L, Xia W (2014) Suppressed bone turnover was associated with increased osteoporotic fracture risks in non-obese postmenopausal Chinese women with type 2 diabetes mellitus. Osteoporos Int 25(8):1999–2005. https://doi.org/10.1007/s00198-014-2714-5

    Article  PubMed  Google Scholar 

  60. Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, Djuric M, Amling M (2010) Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9(6):1065–1075. https://doi.org/10.1111/j.1474-9726.2010.00633.x

    Article  PubMed  Google Scholar 

  61. Weinkamer R, Kollmannsberger P, Fratzl P (2019) Towards a connectomic description of the osteocyte lacunocanalicular network in bone. Curr Osteoporos Rep 17(4):186–194. https://doi.org/10.1007/s11914-019-00515-z

    Article  PubMed  PubMed Central  Google Scholar 

  62. Paschalis EP, Gamsjaeger S, Klaushofer K (2017) Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 28(8):2275–2291. https://doi.org/10.1007/s00198-017-4019-y

    Article  PubMed  Google Scholar 

  63. Creecy A, Uppuganti S, Merkel AR, O'Neal D, Makowski AJ, Granke M, Voziyan P, Nyman JS (2016) Changes in the fracture resistance of bone with the progression of type 2 diabetes in the ZDSD rat. Calcif Tissue Int 99(3):289–301. https://doi.org/10.1007/s00223-016-0149-z

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mansur SA, Mieczkowska A, Flatt PR, Chappard D, Irwin N, Mabilleau G (2019) The GLP-1 receptor agonist exenatide ameliorates bone composition and tissue material properties in high fat fed diabetic mice. Front Endocrinol (Lausanne) 10:51. https://doi.org/10.3389/fendo.2019.00051

    Article  Google Scholar 

  65. Pascart T, Falgayrac G, Migaud H, Quinchon J, Norberciak L, Budzik JF, Paccou J, Cotten A, Penel G, Cortet B (2017) Region specific Raman spectroscopy analysis of the femoral head reveals that trabecular bone is unlikely to contribute to non-traumatic osteonecrosis. Sci Rep 7(1):97. https://doi.org/10.1038/s41598-017-00162-3

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fiedler IAK, Schmidt FN, Wölfel EM, Plumeyer C, Milovanovic P, Gioia R, Tonelli F, Bale HA, Jähn K, Besio R, Forlino A, Busse B (2018) Severely impaired bone material quality in Chihuahua Zebrafish resembles classical dominant human Osteogenesis Imperfecta. J Bone Miner Res 33(8):1489–1499. https://doi.org/10.1002/jbmr.3445

    Article  PubMed  Google Scholar 

  67. Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K (2015) Fourier transform infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int 96(1):18–29. https://doi.org/10.1007/s00223-014-9933-9

    Article  PubMed  Google Scholar 

  68. Creecy A, Uppuganti S, Unal M, Clay Bunn R, Voziyan P, Nyman JS (2018) Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age. Bone. 110:204–214. https://doi.org/10.1016/j.bone.2018.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hammond MA, Gallant MA, Burr DB, Wallace JM (2014) Nanoscale changes in collagen are reflected in physical and mechanical properties of bone at the microscale in diabetic rats. Bone. 60:26–32. https://doi.org/10.1016/j.bone.2013.11.015

    Article  PubMed  Google Scholar 

  70. Mandair GS, Morris MD (2015) Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep 4:620. https://doi.org/10.1038/bonekey.2014.115

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kanazawa I, Sugimoto T (2018) Diabetes mellitus-induced bone fragility. Intern Med 57(19):2773–2785. https://doi.org/10.2169/internalmedicine.0905-18

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe K, Azuma Y, Ohta T, Kadowaki T, Nakamura K, Kawaguchi H (2000) Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 105(7):935–943. https://doi.org/10.1172/JCI9017

    Article  PubMed  PubMed Central  Google Scholar 

  73. Milovanovic P, Vom Scheidt A, Mletzko K, Sarau G, Püschel K, Djuric M, Amling M, Christiansen S, Busse B (2018) Bone tissue aging affects mineralization of cement lines. Bone. 110:187–193. https://doi.org/10.1016/j.bone.2018.02.004

    Article  PubMed  Google Scholar 

  74. Rolvien T, Vom Scheidt A, Stockhausen KE, Milovanovic P, Djonic D, Hubert J, Hawellek T, Wacker A, Jebens V, Püschel K, Zimmermann EA, Djuric M, Amling M, Busse B (2018) Inter-site variability of the osteocyte lacunar network in the cortical bone underpins fracture susceptibility of the superolateral femoral neck. Bone. 112:187–193. https://doi.org/10.1016/j.bone.2018.04.018

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank medical technicians who assisted during sample collection: Branislav Milivojevic, Bojan Kacarevic, and Milos Knezevic (Institute for Pathology, University of Belgrade, Serbia).

Funding

This work was supported by institutional partnership grant of Alexander von Humboldt Foundation, South-East-Europe Cooperation of the University Medical Center Hamburg-Eppendorf under direction of Prof. H.J. Seitz, German Research Foundation (DFG, BU 2562/3-1), German Academic Exchange Service (DAAD), Ministry of Education and Science of the Republic of Serbia (III 45005), and Science Fund of the Republic of Serbia (PROMIS, #6064549, DiaBoNet). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 860898.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Marija Djuric; methodology: Marija Djuric, Björn Busse, and Petar Milovanovic; formal analysis and investigation: Teodora Rodic, Eva Maria Wölfel, Petar Milovanovic, Imke A.K. Fiedler, Katharina Jähn-Rickert, and Danica Cvetkovic; writing—original draft preparation: Teodora Rodic; writing—review and editing: Teodora Rodic, Petar Milovanovic, Marija Djuric, Eva Maria Wölfel, Imke A.K. Fiedler, Katharina Jähn-Rickert, Björn Busse; supervision: Marija Djuric, Björn Busse, Katharina Jähn, Michael Amling, Jelena Sopta, Slobodan Nikolic, and Vladimir Zivkovic; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marija Djuric.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of the Faculty of Medicine, University of Belgrade, Serbia, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from the families of all individual participants included in the study. The aspect of confidentiality was respected.

Consent to publish

Not applicable.

Code availability

Available upon request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 Comparison of the 3D microstructural parameters in the cortical bone between control group and T2DM groups
Table 2 Comparison of the 3D microstructural parameters in the trabecular bone between control and T2DM groups
Table 3 Values of the qBEI parameters in control and T2DM groups
Table 4 Values of the osteonal morphology parameters of the trabecular bone in the molar region in control and T2DM groups
Table 5 Values of the osteonal morphology and osteocyte lacunar parameters of the cortical bone in control and T2DM groups
Table 6 Values of tissue composition and maturity parameters of cortical bone and trabecular bone in control and T2DM groups
Table 7 Values of bone cellular parameters of the trabecular bone in control and T2DM groups
Table 8 Values of cortical bone thickness in control and T2DM groups

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodic, T., Wölfel, E.M., Milovanovic, P. et al. Bone quality analysis of jaw bones in individuals with type 2 diabetes mellitus—post mortem anatomical and microstructural evaluation. Clin Oral Invest 25, 4377–4400 (2021). https://doi.org/10.1007/s00784-020-03751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03751-1

Keywords

Navigation