Skip to main content

Advertisement

Log in

Complement activation links inflammation to dental tissue regeneration

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Complement is an efficient plasma immune surveillance system. It initiates inflammation by inducing vascular modifications and attracting immune cells expressing Complement receptors. Investigating Complement receptors in non-immune cells pointed out Complement implication in the regeneration of tissue such as liver, skin, or bone. This review will shed the light on Complement implication in the initial steps of dental tissue regeneration.

Materials and methods

Review of literature was conducted on Complement local expression and implication in oral tissue regeneration in vivo and in vitro.

Results

Recent data reported expression of Complement receptors and soluble proteins in dental tissues. Cultured pulp fibroblasts secrete all Complement components. Complement C3b and MAC have been shown to control bacteria growth in the dental pulp while C3a and C5a are involved in the initial steps of pulp regeneration. Indeed, C3a induces pulp stem cell/fibroblast proliferation, and fibroblast recruitment, while C5a induces neurite growth, guides stem cell recruitment, and odontoblastic differentiation. Similarly, cultured periodontal ligament cells produce C5a which induces bone marrow mesenchymal stem cell recruitment.

Conclusions

Overall, this review highlights that local Complement synthesis in dental tissues plays a major role, not only in eliminating bacteria but also in the initial steps of dental tissue regeneration, thus providing a link between dental tissue inflammation and regeneration.

Clinical relevance

Complement provides an explanation for understanding why inflammation preceeds regeneration. This may also provide a biological rational for understanding the reported success conservative management of mature permanent teeth with carious pulp exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15:551–567. https://doi.org/10.1038/nrd.2016.39

    Article  PubMed  Google Scholar 

  2. Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB (2019) Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196:80–89. https://doi.org/10.1016/j.biomaterials.2017.12.025

    Article  PubMed  Google Scholar 

  3. Feehan KT, Gilroy DW (2019) Is resolution the end of inflammation? Trends Mol Med 25:198–214. https://doi.org/10.1016/j.molmed.2019.01.006

    Article  PubMed  Google Scholar 

  4. Schett G, Neurath MF (2018) Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat Commun 9:3261. https://doi.org/10.1038/s41467-018-05800-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB (2020) Modulation of the inflammatory response and bone healing. Front Endocrinol 11. https://doi.org/10.3389/fendo.2020.00386

  6. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. PNAS 110:9415–9420. https://doi.org/10.1073/pnas.1300290110

    Article  PubMed  Google Scholar 

  7. Winkelstein JA, Sullivan KE (2010) CHAPTER 11—complement deficiencies. In: Leung DYM, Sampson HA, Geha R, Szefler SJ (eds) Pediatric allergy: principles and practice (second edition). W.B. Saunders, Edinburgh, pp 119–132

    Chapter  Google Scholar 

  8. Ehrnthaller C, Huber-Lang M, Nilsson P, Bindl R, Redeker S, Recknagel S, Rapp A, Mollnes T, Amling M, Gebhard F, Ignatius A (2013) Complement C3 and C5 deficiency affects fracture healing. PLoS One 8:e81341. https://doi.org/10.1371/journal.pone.0081341

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa AT (2010) The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res 59:897–905. https://doi.org/10.1007/s00011-010-0220-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nesargikar PN, Spiller B, Chavez R (2012) The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol (Bp) 2:103–111. https://doi.org/10.1556/EuJMI.2.2012.2.2

    Article  Google Scholar 

  11. Thorgersen EB, Barratt-Due A, Haugaa H, Harboe M, Pischke SE, Nilsson PH, Mollnes TE (2019) The role of complement in liver injury, regeneration, and transplantation. Hepatology 70:725–736. https://doi.org/10.1002/hep.30508

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lubbers R, van Essen MF, van Kooten C, Trouw LA (2017) Production of complement components by cells of the immune system. Clin Exp Immunol 188:183–194. https://doi.org/10.1111/cei.12952

    Article  PubMed  PubMed Central  Google Scholar 

  13. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part I—molecular mechanisms of activation and regulation. Front Immunol 6. https://doi.org/10.3389/fimmu.2015.00262

  14. Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, Voorhorst M, Ugurlar D, Rosati S, Heck AJR, van de Winkel JGJ, Wilson IA, Koster AJ, Taylor RP, Ollmann Saphire E, Burton DR, Schuurman J, Gros P, Parren PWHI (2014) Complement is activated by IgG hexamers assembled at the cell surface. Science 343:1260–1263. https://doi.org/10.1126/science.1248943

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mortensen SA, Sander B, Jensen RK, Pedersen JS, Golas MM, Jensenius JC, Hansen AG, Thiel S, Andersen GR (2017) Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc Natl Acad Sci U S A 114:986–991. https://doi.org/10.1073/pnas.1616998114

    Article  PubMed  PubMed Central  Google Scholar 

  16. Endo Y, Matsushita M, Fujita T (2011) The role of ficolins in the lectin pathway of innate immunity. Int J Biochem Cell Biol 43:705–712. https://doi.org/10.1016/j.biocel.2011.02.003

    Article  PubMed  Google Scholar 

  17. Mödinger Y, Teixeira GQ, Neidlinger-Wilke C, Ignatius A (2018) Role of the complement system in the response to orthopedic biomaterials. Int J Mol Sci 19. https://doi.org/10.3390/ijms19113367

  18. Hawksworth OA, Li XX, Coulthard LG, Wolvetang EJ, Woodruff TM (2017) New concepts on the therapeutic control of complement anaphylatoxin receptors. Mol Immunol 89:36–43. https://doi.org/10.1016/j.molimm.2017.05.015

    Article  PubMed  Google Scholar 

  19. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part II: role in immunity. Front Immunol 6. https://doi.org/10.3389/fimmu.2015.00257

  20. Haas P-J, van Strijp J (2007) Anaphylatoxins: their role in bacterial infection and inflammation. Immunol Res 37:161–175. https://doi.org/10.1007/bf02697367

    Article  PubMed  Google Scholar 

  21. Coulthard LG, Woodruff TM (2015) Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol 194:3542–3548. https://doi.org/10.4049/jimmunol.1403068

    Article  PubMed  Google Scholar 

  22. Dunkelberger JR, Song W-C (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50. https://doi.org/10.1038/cr.2009.139

    Article  PubMed  Google Scholar 

  23. van Lookeren Campagne M, Verschoor A (2018) Pathogen clearance and immune adherence “revisited”: immuno-regulatory roles for CRIg. Semin Immunol 37:4–11. https://doi.org/10.1016/j.smim.2018.02.007

    Article  PubMed  Google Scholar 

  24. Bayly-Jones C, Bubeck D, Dunstone MA (2017) The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond Ser B Biol Sci 372:20160221. https://doi.org/10.1098/rstb.2016.0221

    Article  Google Scholar 

  25. Del Rio-Tsonis K, Tsonis PA, Zarkadis IK et al (1998) Expression of the third component of complement, C3, in regenerating limb blastema cells of urodeles. J Immunol 161:6819–6824

    PubMed  Google Scholar 

  26. Kimura Y, Madhavan M, Call MK, Santiago W, Tsonis PA, Lambris JD, del Rio-Tsonis K (2003) Expression of complement 3 and complement 5 in newt limb and lens regeneration. J Immunol 170:2331–2339. https://doi.org/10.4049/jimmunol.170.5.2331

    Article  PubMed  Google Scholar 

  27. Mastellos D, Papadimitriou JC, Franchini S, Tsonis PA, Lambris JD (2001) A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J Immunol 166:2479–2486. https://doi.org/10.4049/jimmunol.166.4.2479

    Article  PubMed  Google Scholar 

  28. Mödinger Y, Löffler B, Huber-Lang M, Ignatius A (2018) Complement involvement in bone homeostasis and bone disorders. Semin Immunol 37:53–65. https://doi.org/10.1016/j.smim.2018.01.001

    Article  PubMed  Google Scholar 

  29. Sakiyama H, Nakagawa K, Kuriiwa K, Imai K, Okada Y, Tsuchida T, Moriya H, Imajoh-Ohmi S (1997) Complement Cls, a classical enzyme with novel functions at the endochondral ossification center: immunohistochemical staining of activated Cls with a neoantigen-specific antibody. Cell Tissue Res 288:557–565. https://doi.org/10.1007/s004410050841

    Article  PubMed  Google Scholar 

  30. Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824:133–145. https://doi.org/10.1016/j.bbapap.2011.06.020

    Article  PubMed  Google Scholar 

  31. Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, Kandert S, Brenner RE, Schneider M, Lambris JD, Huber-Lang M (2011) Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J Cell Biochem 112:2594–2605. https://doi.org/10.1002/jcb.23186

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ignatius A, Ehrnthaller C, Brenner RE, Kreja L, Schoengraf P, Lisson P, Blakytny R, Recknagel S, Claes L, Gebhard F, Lambris JD, Huber-Lang M (2011) The anaphylatoxin receptor C5aR is present during fracture healing in rats and mediates osteoblast migration in vitro. J Trauma 71:952–960. https://doi.org/10.1097/TA.0b013e3181f8aa2d

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 2013:1–7. https://doi.org/10.1155/2013/146764

    Article  Google Scholar 

  34. Rafail S, Kourtzelis I, Foukas PG, Markiewski MM, DeAngelis RA, Guariento M, Ricklin D, Grice EA, Lambris JD (2015) Complement deficiency promotes cutaneous wound healing in mice. J Immunol 194:1285–1291. https://doi.org/10.4049/jimmunol.1402354

    Article  PubMed  Google Scholar 

  35. Sinno H, Malhotra M, Lutfy J, Jardin B, Winocour S, Brimo F, Beckman L, Watters K, Philip A, Williams B, Prakash S (2012) Accelerated wound healing with topical application of complement C5. Plast Reconstr Surg 130:523–529. https://doi.org/10.1097/PRS.0b013e31825dc02d

    Article  PubMed  Google Scholar 

  36. Sinno H, Malholtra M, Lutfy J, Jardin B, Winocour S, Brimo F, Beckman L, Watters K, Philip A, Williams B, Prakash S (2013) Topical application of complement C3 in collagen formulation increases early wound healing. J Dermatol Treat 24:141–147. https://doi.org/10.3109/09546634.2011.631977

    Article  Google Scholar 

  37. Sinno H, Malhotra M, Lutfy J, Jardin B, Winocour S, Brimo F, Beckman L, Watters K, Philip A, Williams B, Prakash S (2013) Complements c3 and c5 individually and in combination increase early wound strength in a rat model of experimental wound healing. Plast Surg Int 2013:243853–243855. https://doi.org/10.1155/2013/243853

    Article  PubMed  PubMed Central  Google Scholar 

  38. Abe T, Hosur KB, Hajishengallis E, Reis ES, Ricklin D, Lambris JD, Hajishengallis G (2012) Local complement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor (CD88) antagonist. J Immunol 189:5442–5448. https://doi.org/10.4049/jimmunol.1202339

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hajishengallis G, Maekawa T, Abe T et al (2015) Complement involvement in periodontitis: molecular mechanisms and rational therapeutic approaches. Adv Exp Med Biol 865:57–74. https://doi.org/10.1007/978-3-319-18603-0_4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Challacombe SJ, Shirlaw PJ, Thornhill MH (2015) Chapter 102—immunology of diseases of the oral cavity. In: Mestecky J, Strober W, Russell MW et al (eds) Mucosal immunology, Fourth edn. Academic Press, Boston, pp 1943–1983

    Chapter  Google Scholar 

  41. Jeanneau C, Le Fournis C, About I (2019) Xenogeneic bone filling materials modulate mesenchymal stem cell recruitment: role of the complement C5a. Clin Oral Investig 24:2321–2329. https://doi.org/10.1007/s00784-019-03087-5

    Article  PubMed  Google Scholar 

  42. Park SH, Ye L, Love RM, Farges JC, Yumoto H (2015) Inflammation of the dental pulp. Mediat Inflamm 2015:980196–980192. https://doi.org/10.1155/2015/980196

    Article  Google Scholar 

  43. Chmilewsky F, Jeanneau C, Laurent P, About I (2014) Pulp fibroblasts synthesize functional complement proteins involved in initiating dentin-pulp regeneration. Am J Pathol 184:1991–2000. https://doi.org/10.1016/j.ajpath.2014.04.003

    Article  PubMed  Google Scholar 

  44. Le Fournis C, Hadjichristou C, Jeanneau C, About I (2019) Human pulp fibroblast implication in phagocytosis via complement activation. J Endod 45:584–590. https://doi.org/10.1016/j.joen.2018.10.023

    Article  PubMed  Google Scholar 

  45. Jeanneau C, Rufas P, Rombouts C, Giraud T, Dejou J, About I (2015) Can pulp fibroblasts kill cariogenic bacteria? Role of complement activation. J Dent Res 94:1765–1772. https://doi.org/10.1177/0022034515611074

    Article  PubMed  Google Scholar 

  46. Rufas P, Jeanneau C, Rombouts C, Laurent P, About I (2016) Complement C3a mobilizes dental pulp stem cells and specifically guides pulp fibroblast recruitment. J Endod 42:1377–1384. https://doi.org/10.1016/j.joen.2016.06.011

    Article  PubMed  Google Scholar 

  47. Chmilewsky F, Jeanneau C, Laurent P, Kirschfink M, About I (2013) Pulp progenitor cell recruitment is selectively guided by a C5a gradient. J Dent Res 92:532–539. https://doi.org/10.1177/0022034513487377

    Article  PubMed  Google Scholar 

  48. Giraud T, Rufas P, Chmilewsky F, Rombouts C, Dejou J, Jeanneau C, About I (2017) Complement activation by pulp capping materials plays a significant role in both inflammatory and pulp stem cells’ recruitment. J Endod 43:1104–1110. https://doi.org/10.1016/j.joen.2017.02.016

    Article  PubMed  Google Scholar 

  49. Chmilewsky F, About I, Chung S-H (2016) Pulp fibroblasts control nerve regeneration through complement activation. J Dent Res 95:913–922. https://doi.org/10.1177/0022034516643065

    Article  PubMed  Google Scholar 

  50. Liu M, Mu H, Peng W, Zhao L, Hu W, Jiang Z, Gao L, Cao X, Li N, Han J (2019) Time-dependent C5a and C5aR expression in dental pulp cells following stimulation with LTA and LPS. Int J Mol Med 44:823–834. https://doi.org/10.3892/ijmm.2019.4246

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ohno M, Hirata T, Enomoto M, Araki T, Ishimaru H, Takahashi TA (2000) A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol Immunol 37:407–412. https://doi.org/10.1016/s0161-5890(00)00067-5

    Article  PubMed  Google Scholar 

  52. Li R, Coulthard LG, Wu MCL, Taylor SM, Woodruff TM (2013) C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J 27:855–864. https://doi.org/10.1096/fj.12-220509

    Article  PubMed  Google Scholar 

  53. Chmilewsky F, Liang R, Kanazawa M, About I, Cooper LF, George A (2019) C5L2 regulates DMP1 expression during odontoblastic differentiation. J Dent Res 98:597–604. https://doi.org/10.1177/0022034518820461

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chmilewsky F, About I, Chung SH (2017) C5L2 receptor represses brain-derived neurotrophic factor secretion in lipoteichoic acid-stimulated pulp fibroblasts. J Dent Res 96:92–99. https://doi.org/10.1177/0022034516673832

    Article  PubMed  Google Scholar 

  55. Chmilewsky F, About I, Cooper LF, Chung SH (2018) C5L2 silencing in human pulp fibroblasts enhances nerve outgrowth under lipoteichoic acid stimulation. J Endod 44:1396–1401. https://doi.org/10.1016/j.joen.2018.05.004

    Article  PubMed  Google Scholar 

  56. Natarajan N, Abbas Y, Bryant DM, Gonzalez-Rosa JM, Sharpe M, Uygur A, Cocco-Delgado LH, Ho NN, Gerard NP, Gerard CJ, MacRae CA, Burns CE, Burns CG, Whited JL, Lee RT (2018) Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation 137:2152–2165. https://doi.org/10.1161/CIRCULATIONAHA.117.030801

    Article  PubMed  PubMed Central  Google Scholar 

  57. Matsumoto N, Satyam A, Geha M, Lapchak PH, Dalle Lucca JJ, Tsokos MG, Tsokos GC (2017) C3a enhances the formation of intestinal organoids through C3aR1. Front Immunol 8:1046. https://doi.org/10.3389/fimmu.2017.01046

    Article  PubMed  PubMed Central  Google Scholar 

  58. Matsuoka K, Park K-A, Ito M, Ikeda K, Takeshita S (2014) Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res 29:1522–1530. https://doi.org/10.1002/jbmr.2187

    Article  PubMed  Google Scholar 

  59. Peterson SL, Nguyen HX, Mendez OA, Anderson AJ (2015) Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo. J Neurosci 35:4332–4349. https://doi.org/10.1523/JNEUROSCI.4473-12.2015

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fayyazi A, Sandau R, Duong LQ, Götze O, Radzun HJ, Schweyer S, Soruri A, Zwirner J (1999) C5a receptor and interleukin-6 are expressed in tissue macrophages and stimulated keratinocytes but not in pulmonary and intestinal epithelial cells. Am J Pathol 154:495–501. https://doi.org/10.1016/S0002-9440(10)65295-9

    Article  PubMed  PubMed Central  Google Scholar 

  61. Katz Y, Nadiv O, Rapoport MJ, Loos M (2000) IL-17 regulates gene expression and protein synthesis of the complement system, C3 and factor B, in skin fibroblasts. Clin Exp Immunol 120:22–29. https://doi.org/10.1046/j.1365-2249.2000.01199.x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Aix-Marseille University and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad About.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, M., Jeanneau, C., Giraud, T. et al. Complement activation links inflammation to dental tissue regeneration. Clin Oral Invest 24, 4185–4196 (2020). https://doi.org/10.1007/s00784-020-03621-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03621-w

Keywords

Navigation