Skip to main content

Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches

  • Conference paper
Immune Responses to Biosurfaces

Abstract

The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35(1):3–11. http://dx.doi.org/10.1016/j.it.2013.09.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2014; Epub ahead of print: doi: 10.1016/j.molmed.2014.11.004.

  3. Stabholz A, Soskolne WA, Shapira L. Genetic and environmental risk factors for chronic periodontitis and aggressive periodontitis. Periodontol 2000. 2010;53:138–53. doi:10.1111/j.1600-0757.2010.00340.x.

    Article  PubMed  Google Scholar 

  4. Laine ML, Crielaard W, Loos BG. Genetic susceptibility to periodontitis. Periodontol 2000. 2012;58(1):37–68. doi:10.1111/j.1600-0757.2011.00415.x.

    Article  PubMed  Google Scholar 

  5. Zhou Q, Leeman SE, Amar S. Signaling mechanisms in the restoration of impaired immune function due to diet-induced obesity. Proc Natl Acad Sci U S A. 2011;108(7):2867–72. doi:10.1073/pnas.1019270108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Divaris K, Monda KL, North KE, Olshan AF, Reynolds LM, Hsueh WC, et al. Exploring the genetic basis of chronic periodontitis: a genome-wide association study. Hum Mol Genet. 2013;22(11):2312–24. doi:10.1093/hmg/ddt065.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Palmer RM, Wilson RF, Hasan AS, Scott DA. Mechanisms of action of environmental factors–tobacco smoking. J Clin Periodontol. 2005;32 Suppl 6:180–95. doi:10.1111/j.1600-051X.2005.00786.x.

    Article  CAS  PubMed  Google Scholar 

  8. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20. doi:10.1177/0022034512457373.

    Article  CAS  PubMed  Google Scholar 

  9. Tsilivakos MG, Manolis SK, Vikatou O, Papagrigorakis MJ. Periodontal disease in the Mycenean (1450–1150 BC) population of Aghia Triada, W. Peloponnese, Greece. Int J Anthropol. 2002;17(2):91–9. doi:10.1007/bf02447400.

    Article  Google Scholar 

  10. Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol. 2011;7(12):738–48. doi:10.1038/nrendo.2011.106. doi:nrendo.2011.106 [pii].

    Article  CAS  PubMed  Google Scholar 

  11. Kebschull M, Demmer RT, Papapanou PN. “Gum bug leave my heart alone”: epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J Dent Res. 2010;89:879–902. doi:10.1177/0022034510375281. 0022034510375281 [pii].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Han YW, Houcken W, Loos BG, Schenkein HA, Tezal M. Periodontal disease, atherosclerosis, adverse pregnancy outcomes, and head-and-neck cancer. Adv Dent Res. 2014;26(1):47–55. doi:10.1177/0022034514528334.

    Article  CAS  PubMed  Google Scholar 

  13. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44. doi:10.1038/nri3785.

    Article  CAS  PubMed  Google Scholar 

  14. Brown LJ, Johns BA, Wall TP. The economics of periodontal diseases. Periodontol 2000. 2002;29:223–34. prd290111 [pii].

    Article  PubMed  Google Scholar 

  15. Beikler T, Flemmig TF. Oral biofilm-associated diseases: trends and implications for quality of life, systemic health and expenditures. Periodontol 2000. 2011;55(1):87–103. doi:10.1111/j.1600-0757.2010.00360.x.

    Article  PubMed  Google Scholar 

  16. Colombo AP, Bennet S, Cotton SL, Goodson JM, Kent R, Haffajee AD, et al. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray. J Periodontol. 2012;83(10):1279–87. doi:10.1902/jop.2012.110566.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Armitage GC. Classifying periodontal diseases: a long-standing dilemma. Periodontol 2000. 2002;30:9–23.

    Article  PubMed  Google Scholar 

  18. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. doi:10.1038/ni.1923.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 2010;31(4):154–63. doi:10.1016/j.it.2010.01.002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol. 2007;28(4):184–92. doi:10.1016/j.it.2007.02.006. S1471-4906(07)00048-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  21. Jalili A, Shirvaikar N, Marquez-Curtis L, Qiu Y, Korol C, Lee H, et al. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol. 2010;38:321–32. doi:10.1016/j.exphem.2010.02.002. S0301-472X(10)00046-9 [pii].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. doi:10.1038/cr.2009.139. cr2009139 [pii].

    Article  CAS  PubMed  Google Scholar 

  23. Friec GL, Kemper C. Complement: coming full circle. Arch Immunol Ther Exp (Warsz). 2009;57(6):393–407. doi:10.1007/s00005-009-0047-4.

    Article  CAS  Google Scholar 

  24. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729–40. doi:10.1038/nri2620. nri2620 [pii].

    CAS  PubMed  Google Scholar 

  25. Ricklin D, Lambris J, D. Complement in Immune and Inflammatory Disorders: Pathophysiological Mechanisms. J Immunol. 2013;190: in press.

    Google Scholar 

  26. Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nat Rev Microbiol. 2008;6(2):132–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Potempa J, Pike RN. Corruption of innate immunity by bacterial proteases. J Innate Immun. 2009;1:70–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Krauss JL, Potempa J, Lambris JD, Hajishengallis G. Complementary Tolls in the periodontium: how periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host. Periodontol 2000. 2010;52(1):141–62. doi:10.1111/j.1600-0757.2009.00324.x.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mahtout H, Chandad F, Rojo JM, Grenier D. Porphyromonas gingivalis mediates the shedding and proteolysis of complement regulatory protein CD46 expressed by oral epithelial cells. Oral Microbiol Immunol. 2009;24(5):396–400. doi:10.1111/j.1399-302X.2009.00532.x.

    Article  CAS  PubMed  Google Scholar 

  30. Hajishengallis G, Abe T, Maekawa T, Hajishengallis E, Lambris JD. Role of complement in host-microbe homeostasis of the periodontium. Semin Immunol. 2013;25:65–72. doi:10.1016/j.smim.2013.04.004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hajishengallis G, Lambris JD. Complement and dysbiosis in periodontal disease. Immunobiology. 2012;217(11):1111–6. doi:10.1016/j.imbio.2012.07.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent Jr RL. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–44.

    Article  CAS  PubMed  Google Scholar 

  33. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000. 2005;38:72–122.

    Article  PubMed  Google Scholar 

  34. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. doi:10.1128/JB.00542-10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Griffen AL, Beall CJ, Firestone ND, Gross EL, Difranco JM, Hardman JH, et al. CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One. 2011;6(4), e19051. doi:10.1371/journal.pone.0019051.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7(5):1016–25. doi:10.1038/ismej.2012.174.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6(6):1176–85. doi:10.1038/ismej.2011.191.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moeschberger ML, Griffen AL. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J Clin Microbiol. 2006;44(10):3665–73. doi:10.1128/JCM.00317-06. 44/10/3665 [pii].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Perez-Chaparro PJ, Goncalves C, Figueiredo LC, Faveri M, Lobao E, Tamashiro N, et al. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res. 2014;93:846–58. doi:10.1177/0022034514542468.

    Article  CAS  PubMed  Google Scholar 

  40. Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014;8(8):1659–72. doi:10.1038/ismej.2014.23.

    Article  PubMed  Google Scholar 

  41. Orth RK, O’Brien-Simpson NM, Dashper SG, Reynolds EC. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol Oral Microbiol. 2011;26(4):229–40. doi:10.1111/j.2041-1014.2011.00612.x.

    Article  PubMed  Google Scholar 

  42. Ramsey MM, Rumbaugh KP, Whiteley M. Metabolite cross-feeding enhances virulence in a model polymicrobial infection. PLoS Pathog. 2011;7(3), e1002012. doi:10.1371/journal.ppat.1002012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Settem RP, El-Hassan AT, Honma K, Stafford GP, Sharma A. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infect Immun. 2012;80(7):2436–43. doi:10.1128/IAI.06276-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10(5):497–506. doi:10.1016/j.chom.2011.10.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Jiao Y, Darzi Y, Tawaratsumida K, Marchesan JT, Hasegawa M, Moon H, et al. Induction of bone loss by pathobiont-mediated nod1 signaling in the oral cavity. Cell Host Microbe. 2013;13(5):595–601. doi:10.1016/j.chom.2013.04.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5(2):e01012–4. doi:10.1128/mBio.01012-14.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe. 2014;15(6):768–78. doi:10.1016/j.chom.2014.05.012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bao K, Belibasakis GN, Thurnheer T, Aduse-Opoku J, Curtis MA, Bostanci N. Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation. BMC Microbiol. 2014;14(1):258. doi:10.1186/s12866-014-0258-7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: The Polymicrobial Synergy and Dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27:409–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25. doi:10.1038/nrmicro2873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Darveau RP, Hajishengallis G, Curtis MA. Porphyromonas gingivalis as a potential community activist for disease. J Dent Res. 2012;91(9):816–20. doi:10.1177/0022034512453589.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Doungudomdacha S, Rawlinson A, Douglas CW. Enumeration of Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans in subgingival plaque samples by a quantitative-competitive PCR method. J Med Microbiol. 2000;49(10):861–74.

    CAS  PubMed  Google Scholar 

  53. Page RC, Lantz MS, Darveau R, Jeffcoat M, Mancl L, Houston L, et al. Immunization of Macaca fascicularis against experimental periodontitis using a vaccine containing cysteine proteases purified from Porphyromonas gingivalis. Oral Microbiol Immunol. 2007;22(3):162–8.

    Article  CAS  PubMed  Google Scholar 

  54. Haffajee AD, Cugini MA, Tanner A, Pollack RP, Smith C, Kent Jr RL, et al. Subgingival microbiota in healthy, well-maintained elder and periodontitis subjects. J Clin Periodontol. 1998;25(5):346–53.

    Article  CAS  PubMed  Google Scholar 

  55. Darveau RP. Porphyromonas gingivalis neutrophil manipulation: risk factor for periodontitis? Trends Microbiol. 2014. doi:10.1016/j.tim.2014.06.006.

    PubMed Central  PubMed  Google Scholar 

  56. Maekawa T, Abe T, Hajishengallis E, Hosur KB, DeAngelis RA, Ricklin D, et al. Genetic and intervention studies implicating complement C3 as a major target for the treatment of periodontitis. J Immunol. 2014;192:6020–7. doi:10.4049/jimmunol.1400569.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Abe T, Hosur KB, Hajishengallis E, Reis ES, Ricklin D, Lambris JD, et al. Local complement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor (CD88) antagonist. J Immunol. 2012;189(11):5442–8. doi:10.4049/jimmunol.1202339.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol. 2011;11(3):187–200. doi:10.1038/nri2918.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wang M, Krauss JL, Domon H, Hosur KB, Liang S, Magotti P, et al. Microbial hijacking of complement-toll-like receptor crosstalk. Sci Signal. 2010;3(109):ra11. doi:10.1126/scisignal.2000697.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Zhang X, Kimura Y, Fang C, Zhou L, Sfyroera G, Lambris JD, et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood. 2007;110(1):228–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Liang S, Krauss JL, Domon H, McIntosh ML, Hosur KB, Qu H, et al. The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J Immunol. 2011;186(2):869–77. doi:10.4049/jimmunol.1003252.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol. 2014;doi: 10.1111/omi.12065.

  63. Cyktor JC, Turner J. Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun. 2011;79(8):2964–73. doi:10.1128/IAI.00047-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE. Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem. 1992;267(26):18902–7.

    CAS  PubMed  Google Scholar 

  65. Hasturk H, Kantarci A, Goguet-Surmenian E, Blackwood A, Andry C, Serhan CN, et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol. 2007;179(10):7021–9.

    Article  CAS  PubMed  Google Scholar 

  66. Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13(5):465–73. doi:10.1038/ni.2260.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Moutsopoulos NM, Konkel J, Sarmadi M, Eskan MA, Wild T, Dutzan N, et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17–driven inflammatory bone loss. Sci Transl Med. 2014;6(229):229ra40. doi:10.1126/scitranslmed.3007696.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Lamster IB, Ahlo JK. Analysis of gingival crevicular fluid as applied to the diagnosis of oral and systemic diseases. Ann N Y Acad Sci. 2007;1098:216–29. doi:10.1196/annals.1384.027. 1098/1/216 [pii].

    Article  PubMed  Google Scholar 

  69. Delima AJ, Van Dyke TE. Origin and function of the cellular components in gingival crevice fluid. Periodontol 2000. 2003;31:55–76.

    Article  PubMed  Google Scholar 

  70. Popadiak K, Potempa J, Riesbeck K, Blom AM. Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J Immunol. 2007;178(11):7242–50.

    Article  CAS  PubMed  Google Scholar 

  71. Schenkein HA, Genco RJ. Complement cleavage products in inflammatory exudates from patients with periodontal diseases. J Immunol. 1978;120(5):1796.

    Google Scholar 

  72. Schenkein HA, Genco RJ. Gingival fluid and serum in periodontal diseases. II. Evidence for cleavage of complement components C3, C3 proactivator (factor B) and C4 in gingival fluid. J Periodontol. 1977;48(12):778–84.

    Article  CAS  PubMed  Google Scholar 

  73. Lally ET, McArthur WP, Baehni PC. Biosynthesis of complement components in chronically inflamed gingiva. J Periodontal Res. 1982;17(3):257–62.

    Article  CAS  PubMed  Google Scholar 

  74. Hetland G, Johnson E, Royset P, Eskeland T. Human alveolar macrophages and monocytes generate the functional classical pathway of complement in vitro. Acta Pathol Microbiol Immunol Scand C. 1987;95(3):117–22.

    CAS  PubMed  Google Scholar 

  75. Li K, Sacks SH, Zhou W. The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Mol Immunol. 2007;44(16):3866–74. doi:10.1016/j.molimm.2007.06.006.

    Article  CAS  PubMed  Google Scholar 

  76. Courts FJ, Boackle RJ, Fudenberg HH, Silverman MS. Detection of functional complement components in gingival crevicular fluid from humans with periodontal diseases. J Dent Res. 1977;56(3):327–31.

    Article  CAS  PubMed  Google Scholar 

  77. Boackle RJ. The interaction of salivary secretions with the human complement system–a model for the study of host defense systems on inflamed mucosal surfaces. Crit Rev Oral Biol Med. 1991;2(3):355–67.

    CAS  PubMed  Google Scholar 

  78. Attstrom R, Laurel AB, Lahsson U, Sjoholm A. Complement factors in gingival crevice material from healthy and inflamed gingiva in humans. J Periodontal Res. 1975;10(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  79. Schenkein HA, Genco RJ. Gingival fluid and serum in periodontal diseases. I. Quantitative study of immunoglobulins, complement components, and other plasma proteins. J Periodontol. 1977;48(12):772–7.

    Article  CAS  PubMed  Google Scholar 

  80. Challacombe SJ, Shirlaw PJ. Immunology of diseases of the oral cavity. In: Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer L, editors. Mucosal immunology. London: Academic; 2005. p. 1517–46.

    Chapter  Google Scholar 

  81. Patters MR, Niekrash CE, Lang NP. Assessment of complement cleavage in gingival fluid during experimental gingivitis in man. J Clin Periodontol. 1989;16(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  82. Toto PD, Lin L, Gargiulo A. Identification of C3a, IgG, IgM in inflamed human gingiva. J Dent Res. 1978;57(5-6):696.

    Article  CAS  PubMed  Google Scholar 

  83. Nikolopoulou-Papaconstantinou AA, Johannessen AC, Kristoffersen T. Deposits of immunoglobulins, complement, and immune complexes in inflamed human gingiva. Acta Odontol Scand. 1987;45(3):187–93.

    Article  CAS  PubMed  Google Scholar 

  84. Rautemaa R, Meri S. Protection of gingival epithelium against complement-mediated damage by strong expression of the membrane attack complex inhibitor protectin (CD59). J Dent Res. 1996;75(1):568–74.

    Article  CAS  PubMed  Google Scholar 

  85. Zhan Y, Zhang R, Lv H, Song X, Xu X, Chai L, et al. Prioritization of candidate genes for periodontitis using multiple computational tools. J Periodontol. 2014;85(8):1059–69. doi:10.1902/jop.2014.130523.

    Article  CAS  PubMed  Google Scholar 

  86. Niekrash CE, Patters MR. Simultaneous assessment of complement components C3, C4, and B and their cleavage products in human gingival fluid. II Longitudinal changes during periodontal therapy. J Periodontal Res. 1985;20(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  87. Beikler T, Peters U, Prior K, Eisenacher M, Flemmig TF. Gene expression in periodontal tissues following treatment. BMC Med Genomics. 2008;1:30. doi:10.1186/1755-8794-1-30. 1755-8794-1-30 [pii].

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Potempa M, Potempa J, Okroj M, Popadiak K, Eick S, Nguyen KA, et al. Binding of complement inhibitor C4b-binding protein contributes to serum resistance of Porphyromonas gingivalis. J Immunol. 2008;181(8):5537–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Malm S, Jusko M, Eick S, Potempa J, Riesbeck K, Blom AM. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia. PLoS One. 2012;7(4), e34852. doi:10.1371/journal.pone.0034852.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. McDowell JV, Huang B, Fenno JC, Marconi RT. Analysis of a unique interaction between the complement regulatory protein factor H and the periodontal pathogen Treponema denticola. Infect Immun. 2009;77(4):1417–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Jusko M, Potempa J, Karim AY, Ksiazek M, Riesbeck K, Garred P, et al. A metalloproteinase karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system. J Immunol. 2012;188(5):2338–49. doi:10.4049/jimmunol.1101240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Graves DT, Fine D, Teng YT, Van Dyke TE, Hajishengallis G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J Clin Periodontol. 2008;35(2):89–105. doi:10.1111/j.1600-051X.2007.01172.x.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Breivik T, Gundersen Y, Gjermo P, Taylor SM, Woodruff TM, Opstad PK. Oral treatment with complement factor C5a receptor (CD88) antagonists inhibits experimental periodontitis in rats. J Periodontal Res. 2011;46(6):643–7. doi:10.1111/j.1600-0765.2011.01383.x.

    Article  CAS  PubMed  Google Scholar 

  94. Sahu A, Morikis D, Lambris JD. Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3. Mol Immunol. 2003;39(10):557–66.

    Article  CAS  PubMed  Google Scholar 

  95. Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: therapeutic interventions. J Immunol. 2013;190(8):3839–47. doi:10.4049/jimmunol.1203200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Qu H, Ricklin D, Bai H, Chen H, Reis ES, Maciejewski M, et al. New analogs of the clinical complement inhibitor compstatin with subnanomolar affinity and enhanced pharmacokinetic properties. Immunobiology. 2013;218(4):496–505. doi:10.1016/j.imbio.2012.06.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Brecx MC, Nalbandian J, Ooya K, Kornman KS, Robertson PB. Morphological studies on periodontal disease in the cynomolgus monkey. II. Light microscopic observations on ligature-induced periodontitis. J Periodontal Res. 1985;20(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  98. Page RC, Schroeder HE. Periodontitis in man and other animals- a comparative review. Basel, Switzerland: Karger; 1982.

    Google Scholar 

  99. Kornman KS, Holt SC, Robertson PB. The microbiology of ligature-induced periodontitis in the cynomolgus monkey. J Periodontal Res. 1981;16(4):363–71.

    Article  CAS  PubMed  Google Scholar 

  100. Assuma R, Oates T, Cochran D, Amar S, Graves DT. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol. 1998;160(1):403–9.

    CAS  PubMed  Google Scholar 

  101. Holt SC, Ebersole J, Felton J, Brunsvold M, Kornman KS. Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science. 1988;239(4835):55–7.

    Article  CAS  PubMed  Google Scholar 

  102. Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical periodontology. J Clin Periodontol. 2012;39(3):239–48. doi:10.1111/j.1600-051X.2011.01810.x.

    Article  CAS  PubMed  Google Scholar 

  103. Hajishengallis G, Sahingur SE. Novel inflammatory pathways in periodontitis. Adv Dent Res. 2014;26(1):23–9. doi:10.1177/0022034514526240.

    Article  CAS  PubMed  Google Scholar 

  104. Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol. 2007;19(1):3–10. doi:10.1016/j.smim.2006.12.002.

    Article  CAS  PubMed  Google Scholar 

  105. Schaefer L. Extracellular matrix molecules: endogenous danger signals as new drug targets in kidney diseases. Curr Opin Pharmacol. 2010;10(2):185–90. doi:10.1016/j.coph.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  106. Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol. 2009;80(9):1421–32. doi:10.1902/jop.2009.090185.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Hasturk H, Kantarci A, Van Dyke TE. Paradigm shift in the pharmacological management of periodontal diseases. Front Oral Biol. 2012;15:160–76. doi:10.1159/000329678.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Hajishengallis G, Lambris JD. Complement-targeted therapeutics in periodontitis. Adv Exp Med Biol. 2013;734:197–206. doi:10.1007/978-1-4614-4118-2_13.

    Article  CAS  Google Scholar 

  109. Krayer JW, Leite RS, Kirkwood KL. Non-surgical chemotherapeutic treatment strategies for the management of periodontal diseases. Dent Clin North Am. 2010;54(1):13–33. doi:10.1016/j.cden.2009.08.010.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Reis ES, DeAngelis RA, Chen H, Resuello RR, Ricklin D, Lambris JD. Therapeutic C3 inhibitor Cp40 abrogates complement activation induced by modern hemodialysis filters. Immunobiology. 2014. doi:10.1016/j.imbio.2014.10.026.

    Google Scholar 

  111. Chi ZL, Yoshida T, Lambris JD, Iwata T. Suppression of drusen formation by compstatin, a peptide inhibitor of complement C3 activation, on cynomolgus monkey with early-onset macular degeneration. Adv Exp Med Biol. 2010;703:127–35. doi:10.1007/978-1-4419-5635-4_9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Silasi-Mansat R, Zhu H, Popescu NI, Peer G, Sfyroera G, Magotti P, et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of E. coli sepsis. Blood. 2010;doi: 10.1182/blood-2010-02-269746; blood-2010-02-269746 [pii].

  113. Risitano AM, Ricklin D, Huang Y, Reis ES, Chen H, Ricci P, et al. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria. Blood. 2014;123(13):2094–101. doi:10.1182/blood-2013-11-536573.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Mastellos DC, Yancopoulou D, Kokkinos P, Huber-Lang M, Hajishengallis G, Biglarnia A, et al. Compstatin: a complement C3-based inhibitor reaching its prime for bedside intervention. Eur J Clin Invest. 2015;45(4):423–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the U.S. National Institutes of Health: DE015254, DE017138, DE021685, and DE024716 (G.H.); AI003040, AI068730, EY020633, and GM097747 (J.D.L.) and from the European Community’s Seventh Framework Programme under grant agreement number 602699 (DIREKT) (J.D.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hajishengallis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hajishengallis, G., Maekawa, T., Abe, T., Hajishengallis, E., Lambris, J.D. (2015). Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches. In: Lambris, J., Ekdahl, K., Ricklin, D., Nilsson, B. (eds) Immune Responses to Biosurfaces. Advances in Experimental Medicine and Biology, vol 865. Springer, Cham. https://doi.org/10.1007/978-3-319-18603-0_4

Download citation

Publish with us

Policies and ethics