Skip to main content

Advertisement

Log in

Do resin-based composite CAD/CAM blocks release monomers?

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The present study aimed to identify and quantify the elution of monomers of five different resin-based CAD/CAM blocks (RCBs) using HPLC.

Methods

Five different RCBs were used in the study: GC Cerasmart (CS), Voco Grandio blocs (GR), 3M Lava Ultimate (LU), Shofu Block (SB), and Vita Enamic (VE). Fifteen samples from each material were prepared using a low-speed precision diamond saw (ISOMET Buehler, Lake Bluff, IL, USA) at 5 × 5 × 4 mm size. After the preparation of samples, an extraction solution was mixed with %75/%25 ethanol/water. The samples were stored in the amber-colored bottles during three different immersed periods as 1 h, 24 h, and 90 days (n = 5). After immersion, 0.5 ml solutions were taken from each bottle and analyzed using HPLC.

Results

A total of 16.7 μg/ml of monomers from SB, 13.4 μg/ml of monomers from GR, 13.2 μg/ml of monomers from CS, and 6.7 μg/ml of monomers from LU were found after 3-m immersion. TEGDMA after 3-m of immersion was only released from the SB group, and also BisEMA was released from the CS group. Among the specimens immersed for 1 h, UDMA was released the least from the LU group and the most from the GR group (p < 0.05). Correspondingly, 24 h and 3 m after immersion, the highest release of monomers was found in the GR (p < 0.05).

Conclusions

When the monomer release from RCBs was evaluated, it was shown that these materials released methacrylate-based monomers except VE, especially if they were kept in a solvent solution for a long time such as 3 m.

Clinical significance

The novel resin-based CAD/CAM blocks might monomer release, which may cause cytotoxic effects. But, the detected amount of monomer release is below the estimated daily limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ (2016) From artisanal to CAD-CAM blocks: state of the art of indirect composites. J Dent Res 95:487–495. https://doi.org/10.1177/0022034516634286

    Article  PubMed  Google Scholar 

  2. Nguyen JF, Migonney V, Ruse ND, Sadoun M (2013) Properties of experimental urethane dimethacrylate-based dental resin composite blocks obtained via thermo-polymerization under high pressure. Dent Mater 29:535–541. https://doi.org/10.1016/j.dental.2013.02.006

    Article  PubMed  Google Scholar 

  3. Nguyen JF, Ruse D, Phan AC, Sadoun MJ (2014) High-temperature-pressure polymerized resin-infiltrated ceramic networks. J Dent Res 93:62–67. https://doi.org/10.1177/0022034513511972

    Article  PubMed  PubMed Central  Google Scholar 

  4. He LH, Swain M (2011) A novel polymer infiltrated ceramic dental material. Dent Mater 27:527–534. https://doi.org/10.1016/j.dental.2011.02.002

    Article  PubMed  Google Scholar 

  5. Coldea A, Swain MV, Thiel N (2013) Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 29:419–426. https://doi.org/10.1016/j.dental.2013.01.002

    Article  PubMed  Google Scholar 

  6. Phan AC, Behin P, Stoclet G, Dorin Ruse N, Nguyen JF, Sadoun M (2015) Optimum pressure for the high-pressure polymerization of urethane dimethacrylate. Dent Mater 31:406–412. https://doi.org/10.1016/j.dental.2015.01.010

    Article  PubMed  Google Scholar 

  7. Phan AC, Tang ML, Nguyen JF, Ruse ND, Sadoun M (2014) High-temperature high-pressure polymerized urethane dimethacrylate-mechanical properties and monomer release. Dent Mater 30:350–356. https://doi.org/10.1016/j.dental.2013.12.009

    Article  PubMed  Google Scholar 

  8. Yin R, Kim YK, Jang YS, Lee JJ, Lee MH, Bae TS (2019) Comparative evaluation of the mechanical properties of CAD/CAM dental blocks. Odontology 107:360–367. https://doi.org/10.1007/s10266-018-0407-9

    Article  PubMed  Google Scholar 

  9. Hussain B, Thieu MKL, Johnsen GF, Reseland JE, Haugen HJ (2017) Can CAD/CAM resin blocks be considered as substitute for conventional resins? Dent Mater 33:1362–1370. https://doi.org/10.1016/j.dental.2017.09.003

    Article  PubMed  Google Scholar 

  10. Barutcigil K, Barutcigil C, Kul E, Ozarslan MM, Buyukkaplan US (2019) Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material. J Prosthodont 28:71–78. https://doi.org/10.1111/jopr.12574

    Article  PubMed  Google Scholar 

  11. Strasser T, Preis V, Behr M, Rosentritt M (2018) Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. Clin Oral Investig 22:2787–2797. https://doi.org/10.1007/s00784-018-2365-6

    Article  PubMed  Google Scholar 

  12. Matzinger M, Hahnel S, Preis V, Rosentritt M (2019) Polishing effects and wear performance of chairside CAD/CAM materials. Clin Oral Investig 23:725–737. https://doi.org/10.1007/s00784-018-2473-3

    Article  PubMed  Google Scholar 

  13. Barutcugil C, Bilgili D, Barutcigil K, Dundar A, Buyukkaplan US, Yilmaz B (2019) Discoloration and translucency changes of CAD-CAM materials after exposure to beverages. J Prosthet Dent 122:325–331. https://doi.org/10.1016/j.prosdent.2019.01.009

    Article  PubMed  Google Scholar 

  14. Samanidou V, Hadjicharalampous M, Palaghias G, Papadoyannis I (2012) Development and validation of an isocratic Hplc method for the simultaneous determination of residual monomers released from dental polymeric materials in artificial saliva. J Liq Chromatogr Relat Technol 35:511–523. https://doi.org/10.1080/10826076.2011.601501

    Article  Google Scholar 

  15. Nguyen JF, Migonney V, Ruse ND, Sadoun M (2012) Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater 28:529–534. https://doi.org/10.1016/j.dental.2011.12.003

    Article  PubMed  Google Scholar 

  16. Lefeuvre M, Bourd K, Loriot MA, Goldberg M, Beaune P, Perianin A, Stanislawski L (2004) TEGDMA modulates glutathione transferase P1 activity in gingival fibroblasts. J Dent Res 83:914–919. https://doi.org/10.1177/154405910408301205

    Article  PubMed  Google Scholar 

  17. Moharamzadeh K, Van Noort R, Brook IM, Scutt AM (2007) HPLC analysis of components released from dental composites with different resin compositions using different extraction media. J Mater Sci Mater Med 18:133–137. https://doi.org/10.1007/s10856-006-0671-z

    Article  PubMed  Google Scholar 

  18. Krifka S, Spagnuolo G, Schmalz G, Schweikl H (2013) A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 34:4555–4563. https://doi.org/10.1016/j.biomaterials.2013.03.019

    Article  PubMed  Google Scholar 

  19. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G (2013) Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater 29:139–156. https://doi.org/10.1016/j.dental.2012.11.005

    Article  PubMed  Google Scholar 

  20. Lin-Gibson S, Sung L, Forster AM, Hu H, Cheng Y, Lin NJ (2009) Effects of filler type and content on mechanical properties of photopolymerizable composites measured across two-dimensional combinatorial arrays. Acta Biomater 5:2084–2094. https://doi.org/10.1016/j.actbio.2009.01.043

    Article  PubMed  Google Scholar 

  21. Gupta SK, Saxena P, Pant VA, Pant AB (2012) Release and toxicity of dental resin composite. Toxicol Int 19:225–234. https://doi.org/10.4103/0971-6580.103652

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grenade C, De Pauw-Gillet MC, Gailly P, Vanheusden A, Mainjot A (2016) Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with human gingival fibroblasts (HGFs). Dent Mater 32:1152–1164. https://doi.org/10.1016/j.dental.2016.06.020

    Article  PubMed  Google Scholar 

  23. Grenade C, De Pauw-Gillet MC, Pirard C, Bertrand V, Charlier C, Vanheusden A, Mainjot A (2017) Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with human gingival keratinocytes (HGKs). Dent Mater 33:333–343. https://doi.org/10.1016/j.dental.2017.01.001

    Article  PubMed  Google Scholar 

  24. Tanaka K, Taira M, Shintani H, Wakasa K, Yamaki M (1991) Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. J Oral Rehabil 18:353–362

    Article  Google Scholar 

  25. Shintani H (1995) Hplc analysis of toxic additives and residual monomer from dental plate. J Liq Chromatogr 18:613–626

    Article  Google Scholar 

  26. Benetti AR, Asmussen E, Munksgaard EC, Dewaele M, Peutzfeldt A, Leloup G, Devaux J (2009) Softening and elution of monomers in ethanol. Dent Mater 25:1007–1013. https://doi.org/10.1016/j.dental.2009.01.104

    Article  PubMed  Google Scholar 

  27. Ferracane JL (2006) Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22:211–222. https://doi.org/10.1016/j.dental.2005.05.005

    Article  PubMed  Google Scholar 

  28. Polydorou O, Beiter J, Konig A, Hellwig E, Kummerer K (2009) Effect of bleaching on the elution of monomers from modern dental composite materials. Dent Mater 25:254–260. https://doi.org/10.1016/j.dental.2008.07.004

    Article  PubMed  Google Scholar 

  29. Sideridou ID, Achilias DS (2005) Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res B Appl Biomater 74:617–626. https://doi.org/10.1002/jbm.b.30252

    Article  PubMed  Google Scholar 

  30. Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, Scheers H, Godderis L, Hoet P, Van Meerbeek B (2011) How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 27:723–747. https://doi.org/10.1016/j.dental.2011.05.001

    Article  PubMed  Google Scholar 

  31. Polydorou O, Konig A, Hellwig E, Kummerer K (2009) Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci 117:68–75. https://doi.org/10.1111/j.1600-0722.2008.00594.x

    Article  PubMed  Google Scholar 

  32. Durner J, Schrickel K, Watts DC, Ilie N (2015) Determination of homologous distributions of bisEMA dimethacrylates in bulk-fill resin-composites by GC-MS. Dent Mater 31:473–480. https://doi.org/10.1016/j.dental.2015.02.006

    Article  PubMed  Google Scholar 

  33. Alshali RZ, Salim NA, Sung R, Satterthwaite JD, Silikas N (2015) Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography. Dent Mater 31:1587–1598. https://doi.org/10.1016/j.dental.2015.10.006

    Article  PubMed  Google Scholar 

  34. Cokic SM, Duca RC, De Munck J, Hoet P, Van Meerbeek B, Smet M, Godderis L, Van Landuyt KL (2018) Saturation reduces in-vitro leakage of monomers from composites. Dent Mater 34:579–586. https://doi.org/10.1016/j.dental.2018.01.005

    Article  PubMed  Google Scholar 

  35. Kanerva L, Henriks-Eckerman ML, Jolanki R, Estlander T (1997) Plastics/acrylics: material safety data sheets need to be improved. Clin Dermatol 15:533–546

    Article  Google Scholar 

  36. Schedle A, Ortengren U, Eidler N, Gabauer M, Hensten A (2007) Do adverse effects of dental materials exist? What are the consequences, and how can they be diagnosed and treated? Clin Oral Implants Res 18(Suppl 3):232–256. https://doi.org/10.1111/j.1600-0501.2007.01481.x

    Article  PubMed  Google Scholar 

  37. Michelsen VB, Moe G, Skalevik R, Jensen E, Lygre H (2007) Quantification of organic eluates from polymerized resin-based dental restorative materials by use of GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci 850:83–91. https://doi.org/10.1016/j.jchromb.2006.11.003

    Article  PubMed  Google Scholar 

  38. Vervliet P, de Nys S, Boonen I, Duca RC, Elskens M, van Landuyt KL, Covaci A (2018) Qualitative analysis of dental material ingredients, composite resins and sealants using liquid chromatography coupled to quadrupole time of flight mass spectrometry. J Chromatogr A 1576:90–100. https://doi.org/10.1016/j.chroma.2018.09.039

    Article  PubMed  Google Scholar 

  39. Moilanen LH, Dahms JK, Hoberman AM (2013) Reproductive toxicity evaluation of the dental resin monomer bisphenol a glycidyl methacrylate (CAS 1565-94-2) in mice. Int J Toxicol 32:415–425. https://doi.org/10.1177/1091581813511995

    Article  PubMed  Google Scholar 

  40. Moilanen LH, Dahms JK, Hoberman AM (2014) Reproductive toxicity evaluation of the dental resin monomer triethylene glycol dimethacrylate (CASRN 109-16-0) in mice. Int J Toxicol 33:106–115. https://doi.org/10.1177/1091581813513909

    Article  PubMed  Google Scholar 

  41. Putzeys E, Nys S, Cokic SM, Duca RC, Vanoirbeek J, Godderis L, Meerbeek BV, Van Landuyt KL (2019) Long-term elution of monomers from resin-based dental composites. Dent Mater 35:477–485. https://doi.org/10.1016/j.dental.2019.01.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors do not have any financial interest in the companies whose materials are included in this article. The authors thank Voco for obtaining their products.

Funding

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK), (grant number: 216S723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çağatay Barutçugil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barutcigil, K., Dündar, A., Batmaz, S.G. et al. Do resin-based composite CAD/CAM blocks release monomers?. Clin Oral Invest 25, 329–336 (2021). https://doi.org/10.1007/s00784-020-03377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03377-3

Keywords

Navigation