Skip to main content

Advertisement

Log in

Peri-implant bone reactions around immediately loaded conical implants with different prosthetic suprastructures: histological and histomorphometrical study on minipigs

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate peri-implant bone reactions around immediately loaded conical implants with metal and acrylic resin prosthetic restorations. Five splinted conical implants were inserted in each hemimandible of six minipigs at the alveolar crest level. Ten implants were inserted in each minipig. All the implants were immediately loaded. The implants were divided into a group with an acrylic resin prosthetic restoration and into another group with a metal prosthetic restoration. No postoperative complications or deaths of the minipigs occurred. All minipigs were killed after 3 months. No implant was lost. A total of 60 implants were retrieved and processed to obtain thin ground sections. Histology and histomorphometry showed the presence of compact, mature bone around all the implants. Bone was in close contact with the implant surface starting from the first or second implant threads. A high quantity of mineralized bone was present around immediately loaded conical, root form implants. No differences in the peri-implant bone response were found in the groups with different prosthetic reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Esposito M, Grusovin MG, Willings M, Coulthard P, Worthington HV (2007) The effectiveness of immediate, early, and conventional loading of dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants 22:893–904

    PubMed  Google Scholar 

  2. Schnitman PA, Wohrle PS, Rubenstein JE, DaSilva JD, Wang NH (1997) Ten-year results for Branemark implants immediately loaded with fixed prostheses at implant placement. Int J Oral Maxillofac Implants 12:495–503

    PubMed  Google Scholar 

  3. Tarnow DP, Emtiaz S, Classi A (1997) Immediate loading of threaded implants at stage 1 surgery in edentulous arches: ten consecutive case reports with 1- to 5-year data. Int J Oral Maxillofac Implants 12:319–324

    PubMed  Google Scholar 

  4. Piattelli A, Corigliano M, Scarano A, Costigliola G, Paolantonio M (1998) Immediate loading of titanium plasma-sprayed implants: an histologic analysis in monkeys. J Periodontol 69:321–327

    PubMed  Google Scholar 

  5. Romanos GE, Toh CG, Siar CH, Swaminathan D (2002) Histologic and histomorphometric evaluation of peri-implant bone subjected to immediate loading: an experimental study with Macaca fascicularis. Int J Oral Maxillofac Implants 17:44–51

    PubMed  Google Scholar 

  6. Zubery Y, Bichacho N, Moses O, Tal H (1999) Immediate loading of modular transitional implants: a histologic and histomorphometric study in dogs. Int J Periodontics Restorative Dent 19:343–353

    PubMed  Google Scholar 

  7. Ledermann PD, Schenk RK, Buser D (1998) Long-lasting osseointegration of immediately loaded, bar-connected TPS screws after 12 years of function: a histologic case report of a 95-year-old patient. Int J Periodontics Restorative Dent 18:552–563

    PubMed  Google Scholar 

  8. Proussaefs P, Lozada JL (2002) Evaluation of two vitallium blade-form implants retrieved after 13 to 21 years of function: a clinical report. J Prosthet Dent 87:412–415

    Article  PubMed  Google Scholar 

  9. Neugebauer J, Traini T, Thams U, Piattelli A, Zöller JE (2006) Peri-implant bone organization under immediate loading state. Circularly polarized light analyses: a minipig study. J Periodontol 77:152–160

    Article  PubMed  Google Scholar 

  10. Albrektsson T, Brånemark P-I, Hasson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting direct bone to implant anchorage in man. Acta Orthop Scand 52:155–170

    Article  PubMed  Google Scholar 

  11. Büchter A, Kleinheinz J, Wiesmann HP, Seper L, Joos U, Meyer U (2004) Peri-implant bone formation around cylindrical and conical implant systems. Mund Kiefer Gesichtschir 8:282–288

    Article  PubMed  Google Scholar 

  12. Joos U, Vollmer D, Kleinheinz J (2000) Effect of implant geometry on strain distribution in peri-implant bone. Mund Kiefer Gesichtschir 4:143–147

    Article  PubMed  Google Scholar 

  13. Nordin T, Jonsson G, Nelvig P, Rasmusson L (1998) The use of a cortical fixture design for fixed partial prostheses. A preliminary report. Clin Oral Implants Res 9:343–347

    Article  PubMed  Google Scholar 

  14. Sakoh J, Wahlmann U, Stender E, Al-Nawas B, Wagner W (2006) Primary stability of a conical implant and a hybrid cylindric screw-type implant in vitro. Int J Oral Maxillofac Implants 21:560–566

    PubMed  Google Scholar 

  15. Quaresma SE, Cury PR, Sendyk WR, Sendyk C (2008) A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. J Oral Implantol 34:1–6

    Article  PubMed  Google Scholar 

  16. Wang S, Liu Y, Fang D, Shi S (2007) The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis 13:530–537

    Article  PubMed  Google Scholar 

  17. Nkenke E, Lehner B, Fenner M et al (2005) Immediate versus delayed loading of dental implants in the maxillae of minipigs: follow-up of implant stability and implant failures. Int J Oral Maxillofac Implants 20:39–47

    PubMed  Google Scholar 

  18. Buchter A, Kleinheinz J, Wiesmann HP et al (2005) Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin Oral Implants Res 16:1–8

    PubMed  Google Scholar 

  19. Büchter A, Joos U, Wiesmann HP, Seper L, Meyer U (2006) Biological and biomechanical evaluation of interface reaction at conical screw-type implants. Head Face Med 2(1):5

    Article  PubMed  Google Scholar 

  20. Joos U, Büchter A, Wiesmann HP, Meyer U (2005) Strain driven fast osseointegration of implants. Head Face Med 1:1–6

    Article  Google Scholar 

  21. Wurzler KK, Heisterkamp M, Bohm H, Kubler NR, Sebald W, Reuther JF (2004) Mandibular reconstruction with autologous bone and osseoinductive implant in the Gottingen minipig. Mund Kiefer Gesichtschir 8:75–82

    Article  PubMed  Google Scholar 

  22. Laiblin C, Jaeschke G (1979) Clinical study of bone and muscle metabolism under stress conditions in the Goettingen minipig—an experimental study. Berl Munch Tierarztl Wochenschr 92:124–128

    PubMed  Google Scholar 

  23. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:96–101

    Article  Google Scholar 

  24. Hürzeler MB, Quiñones CR, Schüpbach P, Vlassis JM, Strub JR, Caffesse RG (1995) Influence of the suprastructure on the peri-implant tissues in beagle dogs. Clin Oral Implants Res 6:139–148

    Article  PubMed  Google Scholar 

  25. Misch CE (2005) Dental implant prosthetics. Elsevier Mosby, St. Louis, USA, pp 502–503

    Google Scholar 

  26. Brunski JB, Puleo DA, Nanci A (2000) Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants 15(1):15–46

    PubMed  Google Scholar 

  27. Davies SJ, Gray RM, McCord JF (2001) Good occlusal practice in removable prosthodontics. Br Dent J 191(9):491–494 497–502

    Article  PubMed  Google Scholar 

  28. Meyer U, Vollmer D, Bourauel C, Joos U (2001) Sensitivity analysis of bone geometries around oral implants upon bone loading using finite element method. Comput Methods Biomech Biomed Eng 3:553–559

    Google Scholar 

  29. Ivanoff CJ, Sennerby L, Lekholm U (1996) Influence of initial implant mobility on the integration of titanium implants. An experimental study in rabbits. Clin Oral Implants Res 7:120–127

    Article  PubMed  Google Scholar 

  30. Meyer U, Vollmer D, Runte C, Bourauel C, Joos U (2001) Bone loading pattern around implants in average and atrophic edentulous maxillae: a finite element analysis. J Craniomaxillofac Surg 29:100–105

    PubMed  Google Scholar 

  31. Lindquist LW, Carlsson GE, Glantz PO (1987) Rehabilitation of the edentulous mandible with a tissue integrated fixed prosthesis: a six year longitudinal study. Quintessence Int 18:89–96

    PubMed  Google Scholar 

  32. Hobkirk JA, Psarros KJ (1992) The influence of occlusal surface material on peak masticatory forces using osseointegrated implant-supported prostheses. Int J Oral Maxillofac Implants 7:345–352

    PubMed  Google Scholar 

  33. Gracis SE, Nicholls JI, Chalupnik JD, Yuodelis RA (1991) Shock-absorbing behavior of five restorative materials used on implants. Int J Prosthodont 4:282–291

    PubMed  Google Scholar 

  34. Duyck J, Van Oosterwyck H, Vander Sloten J, De Cooman M, Puers R, Naert I (2000) Influence of prosthesis material on the loading of implants that support a fixed partial prosthesis: in vivo study. Clin Implant Dent Relat Res 2:100–109

    Article  PubMed  Google Scholar 

  35. Sertgöz A (1997) Finite element analysis study of the effect of superstructure material on stress distribution in an implant supported fixed prosthesis. Int J Prosthodont 10:19–27

    PubMed  Google Scholar 

  36. Cibirka RM, Razzoog ME, Lang BR, Stohler CS (1992) Determining the force absorption quotient for restorative materials used in implant occlusal surfaces. J Prosthet Dent 67:361–364

    Article  PubMed  Google Scholar 

  37. Bassit R, Lindström H, Rangert B (2002) In vivo registration of force development with ceramic and acrylic resin occlusal materials on implant-supported prostheses. Int J Oral Maxillofac Implants 17:17–23

    PubMed  Google Scholar 

  38. Miyata T, Kobayashi Y, Araki H, Ohto T, Shin K (2002) The influence of controlled occlusal overload on peri-implant tissue. Part 4: a histologic study in monkeys. Int J Oral Maxillofac Implants 17:384–390

    PubMed  Google Scholar 

  39. Isidor F (2006) Influence of forces on peri-implant bone. Clin Oral Implants Res 17(Suppl.2):8–18

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ministry of University, Education and Research (M.I.U.R.), Rome, Italy. The help of Prof. F. San Roman, Madrid, Spain, is gratefully acknowledged.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Piattelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assenza, B., Scarano, A., Perrotti, V. et al. Peri-implant bone reactions around immediately loaded conical implants with different prosthetic suprastructures: histological and histomorphometrical study on minipigs. Clin Oral Invest 14, 285–290 (2010). https://doi.org/10.1007/s00784-009-0289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-009-0289-x

Keywords

Navigation