Skip to main content
Log in

A scalable architecture for 3D map navigation on mobile devices

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Mobile devices such as smart phones or tablets are rapidly increasing their graphics and networking capabilities. However, real-time visualization of 3D maps is still a challenging task to accomplish on such limited devices. In this paper, we describe the principles involved in the design and development of a scalable client–server architecture for delivering 3D maps over wireless networks to mobile devices. We have developed a hybrid adaptive streaming and rendering method that distributes the 3D map rendering task between the mobile clients and a remote server. This architecture provides support for efficient delivery of 3D contents to mobile clients according to their capabilities. As a proof of concept, we have implemented a prototype and carried out exhaustive experiments considering different scenarios and hundreds of concurrent connected clients. The analysis of the server workload and the mobile clients performance show that our architecture achieves a great scalability and performance even when using low-end hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Available at http://www.cc.gatech.edu/projects/large_models/ps.html [accessed 28 May 2012].

References

  1. Akenine-Möller T, Ström J (2008) Graphics processing units for handhelds. Proc IEEE 96(5):779–789 doi:10.1109/JPROC.2008.917719

    Article  Google Scholar 

  2. Aranha M, Dubla P, Debattista K, Bashford-Rogers T, Chalmers A (2007) A physically-based client–server rendering solution for mobile devices. In: MUM ’07: proceedings of the 6th international conference on mobile and ubiquitous multimedia. ACM, New York, NY, USA, pp 149–154. doi:10.1145/1329469.1329489

  3. Arikawa M, Konomi S, Ohnishi K (2007) Navitime: supporting pedestrian navigation in the real world. Pervasive Comput IEEE 6(3):21–29. doi:10.1109/MPRV.2007.61

    Article  Google Scholar 

  4. Blinn JF, Newell ME (1976) Texture and reflection in computer generated images. Commun ACM 19(10):542–547. doi:10.1145/360349.360353

    Article  Google Scholar 

  5. Bouatouch K, Point G, Thomas G (2005) A client–server Approach to image-based rendering on mobile terminals. Research report RR-5447, INRIA. http://hal.inria.fr/inria-00000127/en/

  6. Boukerche A, Jarrar R, Pazzi R (2009) A novel interactive streaming protocol for image-based 3D virtual environment navigation. In: IEEE international conference on communications, 2009. ICC ’09, pp 1–6. doi:10.1109/ICC.2009.5198649

  7. Boukerche A, Jarrar R, Pazzi RW (2008) An efficient protocol for remote virtual environment exploration on wireless mobile devices. In: WMuNeP ’08: proceedings of the 4th ACM workshop on Wireless multimedia networking and performance modeling. ACM, New York, USA, pp 45–52. doi:10.1145/1454573.1454584

  8. Burigat S, Chittaro L (2005) Location-aware visualization of vrml models in gps-based mobile guides. In: Web3D ’05: proceedings of the tenth international conference on 3D Web technology. ACM, New York, NY, USA, pp 57–64. doi:10.1145/1050491.1050499

  9. Chang CF, Ger SH (2002) Enhancing 3d graphics on mobile devices by image-based rendering. In: PCM ’02: proceedings of the third IEEE Pacific Rim conference on multimedia. Springer, London, UK, pp 1105–1111

  10. Chehimi F, Coulton P, Edwards R (2008) Evolution of 3D mobile games development. Pers Ubiquit Comput 12:19–25. doi:10.1007/s00779-006-0129-9

    Article  Google Scholar 

  11. Demers M (2008) Fundamentals of geographic information systems. Wiley, London

    Google Scholar 

  12. Diepstraten J, Gorke M, Ertl T (2004) Remote line rendering for mobile devices. In: CGI ’04: proceedings of the computer graphics international. IEEE Comput Soc, Washington, DC, USA, pp 454–461. doi:10.1109/CGI.2004.86

  13. Duguet F, Drettakis G (2004) Flexible point-based rendering on mobile devices. IEEE Comput Graph Appl 24(4):57–63. doi:10.1109/MCG.2004.5

    Article  Google Scholar 

  14. Epic Games, Inc. (2012) Unreal engine. http://udk.com/mobile. Accessed 14 June 2012

  15. Foley J, van Dam A, Feiner S, Hughes J (1990) Computer graphics: principles and practice, 2nd edn. Addison-Wesley Longman, Boston

    Google Scholar 

  16. Google (2012) Google Earth for mobile devices. http://www.google.com/mobile/earth/. Accessed 14 June 2012

  17. He Z, Liang X (2007) A multiresolution object space point-based rendering approach for mobile devices. In: AFRIGRAPH ’07: proceedings of the 5th international conference on computer graphics, virtual reality, visualisation and interaction in Africa. ACM, New York, NY, USA, pp 7–13. doi:10.1145/1294685.1294687

  18. Hekmatzada D, Meseth J, Klein R (2002) Non-photorealistic rendering of complex 3d models on mobile devices. In: 8th annual conference of the international association for mathematical geology, vol 2. Alfred-Wegener-Stiftung, pp 93–98

  19. Hildebrandt D, Klimke J, Hagedorn B, Döllner J (2011) Service-oriented interactive 3d visualization of massive 3d city models on thin clients. In: Proceedings of the 2nd international conference on computing for geospatial research and applications, COM.Geo ’11. ACM, New York, NY, USA, p 6:1. doi:10.1145/1999320.1999326

  20. Huang J, Bue B, Pattath A, Ebert DS, Thomas KM (2007) Interactive illustrative rendering on mobile devices. IEEE Comput Graph Appl 27:48–56. doi:10.1109/MCG.2007.63

    Article  Google Scholar 

  21. Humphreys G, Houston M, Ng R, Frank R, Ahern S, Kirchner PD, Klosowski JT (2002) Chromium: a stream-processing framework for interactive rendering on clusters. ACM Trans Graph 21(3):693–702. doi:10.1145/566654.566639

    Article  Google Scholar 

  22. Hürst W, Helder M (2011) Mobile 3D graphics and virtual reality interaction. In: Proceedings of the 8th international conference on advances in computer entertainment technology, ACE ’11. ACM, New York, NY, USA, pp 28:1–28:8. doi:10.1145/2071423.2071458

  23. ImageVis3D: ImageVis3D: A real-time volume rendering tool for large data. Scientific computing and imaging institute (SCI). http://www.imagevis3d.org (2011). URL http://www.imagevis3d.org. Accessed 20 Feb 2012

  24. Jeong S, Kaufman AE (2007) Interactive wireless virtual colonoscopy. Vis Comput 23(8):545–557. doi:10.1007/s00371-007-0117-8

    Article  Google Scholar 

  25. Kenteris M, Gavalas D, Economou D (2011) Electronic mobile guides: a survey. Pers Ubiquit Comput 15:97–111. doi:10.1007/s00779-010-0295-7

    Article  Google Scholar 

  26. Khronos Group (2010) OpenGL ES—The standard for embedded accelerated 3D graphics. http://www.khronos.org/. Accessed 24 Mar 2010

  27. Lamberti F, Sanna A (2007) A streaming-based solution for remote visualization of 3D graphics on mobile devices. IEEE Trans Vis Comput Graph 13(2):247–260. doi:10.1109/TVCG.2007.29

    Article  Google Scholar 

  28. Lerbour R, Marvie JE, Gautron P (2009) Adaptive streaming and rendering of large terrains: a generic solution. In: 17th WSCG international conference on computer graphics, visualization and computer vision

  29. Livny Y, Kogan Z, El-Sana J (2009) Seamless patches for GPU-based terrain rendering. Vis Comput 25(3):197–208. doi:10.1007/s00371-008-0214-3

    Article  Google Scholar 

  30. Lluch J, Gaitán R, Escrivá M, Camahort E (2006) Multiresolution 3d rendering on mobile devices. In: Alexandrov V, van Albada G, Sloot P, Dongarra J (eds) Computational science—ICCS 2006. Lecture notes in computer science, vol 3992. Springer, Berlin, pp 287–294

  31. Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographic information systems and science. Wiley, London

    Google Scholar 

  32. Luley P, Perko R, Weinzerl J, Paletta L, Almer A (2012) Mobile augmented reality for tourists marft. In: Gartner G, Ortag F (eds) Advances in location-based services, lecture notes in geoinformation and cartography. Springer, Berlin, pp 21–36. doi:10.1007/978-3-642-24198-7_2

    Chapter  Google Scholar 

  33. Martin IM (2000) Adaptive rendering of 3D models over networks using multiple modalities. Tech Rep RC 21722, IBM T.J. Watson Research Center

  34. NaviGenie (2012) NaviGenie 2.0. http://www.navigenie.com/. Accessed 14 June 2012

  35. Noguera JM, Barranco M, Segura RJ, Martínez L (2012) A mobile 3D-GIS hybrid recommender system for tourism. Inf Sci 215(0):37–52. doi:10.1016/j.ins.2012.05.010

    Article  Google Scholar 

  36. Noguera JM, Segura RJ, Ogáyar CJ, Joan-Arinyo R (2011) Navigating large terrains using commodity mobile devices. Comput Geosci 37(9):1218–1233. doi:10.1016/j.cageo.2010.08.007

    Article  Google Scholar 

  37. Nurminen A (2008) Mobile 3d city maps. IEEE Comput Graph Appl 28:20–31. doi:10.1109/MCG.2008.75

    Article  Google Scholar 

  38. Nurminen A, Oulasvirta A (2008) Designing interactions for navigation in 3d mobile maps. In: Meng L, Zipf A, Winter S (eds) Map-based mobile services. Lecture notes in geoinformation and cartography. Springer, Berlin, pp 198–227

    Chapter  Google Scholar 

  39. Oulasvirta A, Estlander S, Nurminen A (2009) Embodied interaction with a 3D versus 2D mobile map. Pers Ubiquit Comput 13:303–320. doi:10.1007/s00779-008-0209-0

    Article  Google Scholar 

  40. Pajarola R (1998) Large scale terrain visualization using the restricted quadtree triangulation. In: VIS ’98: proceedings of the conference on visualization ’98. IEEE Computer Society Press, Los Alamitos, CA, USA, pp 19–26

  41. Pajarola R, Gobbetti E (2007) Survey of semi-regular multiresolution models for interactive terrain rendering. Vis Comput 23(8):583–605. doi:10.1007/s00371-007-0163-2

    Article  Google Scholar 

  42. Paravati G, Sanna A, Lamberti F, Ciminiera L (2011) An open and scalable architecture for delivering 3D shared visualization services to heterogeneous devices. Concurr Comput Pract Exp 23(11):1179–1195. doi:10.1002/cpe.1695

    Article  Google Scholar 

  43. Pazzi R, Boukerche A, Huang T (2008) Implementation, measurement, and analysis of an image-based virtual environment streaming protocol for wireless mobile devices. Instrum Meas IEEE Trans 57(9):1894–1907. doi:10.1109/TIM.2008.919901

    Article  Google Scholar 

  44. Pouderoux J, Marvie J (2005) Adaptive streaming and rendering of large terrains using strip masks. In: GRAPHITE ’05: proceedings of the 3rd international conference on computer graphics and interactive techniques in Australasia and South East Asia. ACM, New York, USA, pp 299–306. doi:10.1145/1101389.1101452

  45. Quillet JC, Thomas G, Granier X, Guitton P, Marvie JE (2006) Using expressive rendering for remote visualization of large city models. In: Web3D ’06: proceedings of the eleventh international conference on 3D web technology. ACM, New York, NY, USA, pp. 27–35. doi:10.1145/1122591.1122595

  46. Rakkolainen I, Vainio T (2001) A 3d city info for mobile users. Comput Graph 25(4):619–625. doi:10.1016/S0097-8493(01)00090-5. (Intelligent interactive assistance and mobile multimedia computing)

    Google Scholar 

  47. Samet HJ (1989) Design and analysis of spatial data structures: quadtrees, octrees, and other hierarchical methods. Addison–Wesley, Redding

    Google Scholar 

  48. Shankel J (2001) Game programming gems 2. Charles River Media Inc., Rockland

    Google Scholar 

  49. Silva WB, Rodrigues MAF (2009) A lightweight 3D visualization and navigation system on handheld devices. In: SAC ’09: proceedings of the 2009 ACM symposium on applied Computing. ACM, New York, NY, USA, pp 162–166. doi:10.1145/1529282.1529318

  50. Suárez JP, Trujillo A, de la Calle M, Gómez DD, Santana JM (2012) An open source virtual globe framework for iOS, Android and WebGL compliant browser. In: Proceedings of the 3rd international conference on computing for geospatial research and applications, COM.Geo ’12. ACM, New York, NY, USA

  51. Unity Technologies (2012) Unity. http://unity3d.com/. Accessed 14 June 2012

  52. Wen J, Wu Y, Wang F (2009) An approach for navigation in 3D models on mobile devices. In: CMRT09: city models, roads and traffic. Paris, France, pp 109–114

  53. Wen J, Zhu B, Wang F (2008) Real-time rendering of large terrain on mobile device. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII. Part B5. Beijing, pp 693–697

  54. Yoo W, Shi S, Jeon W, Nahrstedt K, Campbell R (2010) Real-time parallel remote rendering for mobile devices using graphics processing units. In: 2010 IEEE international conference on multimedia and Expo (ICME), pp 902–907. doi:10.1109/ICME.2010.5583022

Download references

Acknowledgments

This work has been partially supported by the Consejería de Innovación, Ciencia y Empresa of the Junta de Andalucía and the European Union (via ERDF funds) through the research project P07-TIC-02773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Noguera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noguera, J.M., Segura, R.J., Ogáyar, C.J. et al. A scalable architecture for 3D map navigation on mobile devices. Pers Ubiquit Comput 17, 1487–1502 (2013). https://doi.org/10.1007/s00779-012-0598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-012-0598-y

Keywords

Navigation