Skip to main content
Log in

Scalable and Adaptive Streaming of 3D Mesh to Heterogeneous Devices

  • 3DR Express
  • Published:
3D Research

Abstract

This article comprises a presentation of a web platform for the diffusion and visualization of 3D compressed data on the web. Indeed, the major goal of this work resides in the proposal of the transfer adaptation of the three-dimensional data to resources (network bandwidth, the type of visualization terminals, display resolution, user’s preferences...). Also, it is an attempt to provide an effective consultation adapted to the user’s request (preferences, levels of the requested detail, etc.). Such a platform can adapt the levels of detail to the change in the bandwidth and the rendering time when loading the mesh at the client level. In addition, the levels of detail are adapted to the distance between the object and the camera. These features are able to minimize the latency time and to make the real time interaction possible. The experiences as well as the comparison with the existing solutions show auspicious results in terms of latency, scalability and the quality of the experience offered to the users.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hoppe, H. (1996). Progressive meshes. In ACM SIGGRAPH (pp. 99–108).

  2. Alliez, P., & Desbrun, M. (2001). Progressive compression for lossless transmission of triangle meshes. In SIGGRAPH’01 (pp. 195–202).

  3. Devillers, O., & Gandoin, P.-M. (2002). Progressive lossless compression of arbitrary simplicial complexes, ACM Transactions on Graphics. In Siggraph’2002 conference proceedings (pp. 372–379).

  4. Gandoin, P.-M., & Devillers, O. (2002). Compression out-of-core pour la visualisation interactive de maillages. In Proceedings of the 2002 ACM SIGGRAPH conference.

  5. Peng, J., & Kuo, C. (2005). Geometry-guided progressive lossless 3D mesh coding with octree (ot) decomposition. In ACM Transactions on Graphics (Vol. 24, No. 5).

  6. Karni, Z. & Gotsman, C. (2000). Spectral compression of mesh geometry. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH’00 (pp. 279–286) .

  7. Payan, F., & Antonini, M. (2005). An efficient bit allocation for compressing normal meshes with an error-driven quantization. Computer Aided Geometric Design, in Special Issue on Geometric Mesh Processing, 22, 466–486.

  8. Valette, S., & Prost, R. (2004). Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Transactions on Visualization and Computer Graphics, 10(2), 123–129.

    Article  Google Scholar 

  9. Valette, S., Chaine, R., & Prost, R. (2009). Progressive lossless mesh compression via incremental parametric refinement. Computer Graphics Forum, in Proceedings of Symposium on Geometr Processing, 2009(5), 1301–1310.

  10. Lee, H. (Jun 2011). Compression progressive et tatouage conjoint de maillages surfaciques avec attributs de couleur. Thèse de doctorat: Université Claude Bernard, Lyon.

  11. Lee, H., Lavoué, G., & Dupont, F. (2012). Rate-distortion optimization for progressive compression of 3D mesh with color attributes. The Visual Computer, 28(2), 137–153.

    Article  Google Scholar 

  12. Chun, W. (2012). WebGL models: End-to-end. In P. Cozzi & C. Riccio (Eds.), OpenGL insights (pp. 431–454). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  13. Blume, A., Chun, W., Kogan, D., Kokkevis, V., Weber, N., Petterson, R. W., & Zeiger, R. (2011). Google body: 3D human anatomy in the browser. In ACM Siggraph Talks.

  14. Maglo, A., Lee, H., Lavoué, G., Mouton, C., Hudelot, C., & Dupont, F. (2010). Remote scientific visualization of progressive 3D meshes with X3D. In In ACM Web3D.

  15. Behr, J., Jung, Y., Franke, T., & Sturmt, T. (2012). Using images and explicit binary container for efficient and incremental delivery of declarative 3D scenes on the web. In ACM Web3D (pp. 17–26).

  16. Gobbetti, E., Marton, F., Rodriguez, M. B., Ganovelli, F., & Di Benedetto, M. (2012). Adaptive quad patches. In ACM Web3D.

  17. Sawicki, B., & Chaber, B. (2013). Efficient visualization of 3D models by web browser. Computing, 95(Suppl 1), S661–S673.

    Article  Google Scholar 

  18. Lavoué, G., Chevalier, L., & Dupont, F. (2013). Streaming compressed 3D data on the web using JavaScript and WebGL. In ACM Web3D.

  19. Limper, M., Jung, Y., Behr, J., & Alexa, M. (2013). The POP buffer: Rapid progressive clustering by geometry quantization. In Computer graphics forum 2013 (Vol. 32, No. 7). The Eurographics Association and Wiley.

  20. Park, J., & Lee, H. (2014). A hierarchical framework for large 3D mesh streaming on mobile systems. Multimedia Tools and Applications.

  21. Zhao, S., Ooi, W. T., Carlier, A., Morin, G., & Charvillat, V. (2014). Bandwidth adaptation for 3D mesh preview streaming. ACM Transactions on Multimedia Computing, Communications and Applications, 10(1s), 13.

    Article  Google Scholar 

  22. Potenziani, M., Callieri, M., Dellepiane, M., Corsini, M., Ponchio, F., & Scopigno, R. (2015). 3DHOP: 3D heritage online presenter. Computers & Graphics, 52, 129–141.

    Article  Google Scholar 

  23. Ricardo, C. (2012). (mrdoob) Three.js 3D JavaScript library. http://github.com/mrdoob/three.js.

  24. Geelnard, M. (2009). OpenCTM (the Open Compressed Triangle Mesh file format). http://openctm.sourceforge.net/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeineb Abderrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abderrahim, Z., Bouhlel, M.S. Scalable and Adaptive Streaming of 3D Mesh to Heterogeneous Devices. 3D Res 7, 32 (2016). https://doi.org/10.1007/s13319-016-0108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-016-0108-5

Keywords

Navigation