Skip to main content
Log in

Analysis of chronic low back pain with magnetic resonance imaging T2 mapping of lumbar intervertebral disc

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

Magnetic resonance imaging (MRI) T2 mapping utilizes the T2 values for quantification of moisture content and collagen sequence breakdown. Recently, attempts at quantification of lumbar disc degeneration through MRI T2 mapping have been reported. We conducted an analysis of the relationship between T2 values of degenerated intervertebral discs (IVD) and chronic low back pain (CLBP).

Methods

The subjects who had CLBP comprised 28 patients (15 male, 13 female; mean age 48.9 ± 9.6 years; range 22–60 years). All subjects underwent MRI and filled out the low back pain visual analog scale (VAS) and Japanese Orthopaedic Association Back Pain Evaluation Questionnaire (JOABPEQ). The disc was divided into the anterior annulus fibrosus (AF), the nucleus pulposus (NP), and the posterior AF, and each T2 value was measured. This study involved 25 asymptomatic control participants matched with the CLBP group subjects for gender and age (13 male, 12 female; mean age 43.8 ± 14.5 years; range 23–60 years). These subjects had no low back pain, and constituted the control group.

Results

T2 values for IVD tended to be lower in the CLBP group than in the control group, and these values were significantly different within the posterior AF. The correlation coefficients between the VAS scores and T2 values of anterior AF, NP and posterior AF were r = 0.30, −0.15 and −0.50. The correlation coefficient between the JOABPEQ scores (low back pain) and T2 values of anterior AF, NP and posterior AF were r = −0.0041, 0.11 and 0.42. Similarly, the JOABPEQ scores (lumbar function) were r = −0.22, −0.12 and 0.57.

Conclusions

The results indicated a correlation between posterior AF degeneration and CLBP. This study suggests that MRI T2 mapping could be used as a quantitative method for diagnosing discogenic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hurri H, Karppinen J. Discogenic pain. Pain. 2004;112(3):225–8.

    Article  PubMed  Google Scholar 

  2. Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The relative contributions of the disc and zygapophyseal joint in chronic low back pain. Spine. 1994;19(7):801–6.

    Article  CAS  PubMed  Google Scholar 

  3. Schwarzer AC, Aprill CN, Bogduk N. The sacroiliac joint in chronic low back pain. Spine. 1995;20(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  4. Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology. 2007;245(1):43–61.

    Article  PubMed  Google Scholar 

  5. Urban JP, McMullin JF. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine. 1988;13(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  6. Zou J, Yang H, Miyazaki M, Morishita Y, Wei F, McGovern S, Wang JC. Dynamic bulging of intervertebral discs in the degenerative lumbar spine. Spine. 2009;34(23):2545–50.

    Article  PubMed  Google Scholar 

  7. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–8.

    Article  CAS  PubMed  Google Scholar 

  8. Karakida O, Ueda H, Ueda M, Miyasaka T. Diurnal T2 value changes in the lumbar intervertebral discs. Clin Radiol. 2003;58(5):389–92.

    Article  CAS  PubMed  Google Scholar 

  9. Krueger EC, Perry JO, Wu Y, Haughton VM. Changes in T2 relaxation times associated with maturation of the human intervertebral disk. AJNR Am J Neuroradiol. 2007;28(7):1237–41.

    Article  CAS  PubMed  Google Scholar 

  10. Marinelli NL, Haughton VM, Anderson PA. T2 relaxation times correlated with stage of lumbar intervertebral disk degeneration and patient age. AJNR Am J Neuroradiol. 2010;31(7):1278–82.

    Article  CAS  PubMed  Google Scholar 

  11. Perry J, Haughton V, Anderson PA, Wu Y, Fine J, Mistretta C. The value of T2 relaxation times to characterize lumbar intervertebral disks: preliminary results. AJNR Am J Neuroradiol. 2006;27(2):337–42.

    CAS  PubMed  Google Scholar 

  12. Zuo J, Joseph GB, Li X, Link TM, Hu SS, Berven SH, Kurhanewitz J, Majumdar S. In vivo intervertebral disc characterization using magnetic resonance spectroscopy and T1rho imaging: association with discography and Oswestry Disability Index and Short Form-36 Health Survey. Spine. 2012;37(3):214–21.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Takashima H, Takebayashi T, Yoshimoto M, Terashima Y, Tsuda H, Ida K, Yamashita T. Correlation between T2 relaxation time and intervertebral disk degeneration. Skeletal Radiol. 2012;41(2):163–7.

    Article  PubMed  Google Scholar 

  14. Fukui M, Chiba K, Kawakami M, Kikuchi S, Konno S, Miyamoto M, Seichi A, Shimamura T, Shirado O, Taguchi T, Takahashi K, Takeshita K, Tani T, Toyama Y, Yonenobu K, Wada E, Tanaka T, Hirota Y. From the Japanese Orthopaedic Association: JOA Back Pain Evaluation Questionnaire (JOABPEQ)/JOA Cervical Myelopathy Evaluation Questionnaire (JOACMEQ). The report on the revised versions. April 16, 2007. The Subcommittee of the Clinical Outcome Committee of the Japanese Orthopaedic Association on Low Back Pain and Cervical Myelopathy Evaluation. J Orthop Sci. 2009;14(3):348–65.

    Article  PubMed  Google Scholar 

  15. Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine. 2009;34(9):934–40.

    Article  PubMed  Google Scholar 

  16. Trattnig S, Stelzeneder D, Goed S, Reissegger M, Mamisch TC, Paternostro-Sluga T, Weber M, Szomolanyi P, Welsch GH. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T. Eur Radiol. 2010;20(11):2715–22.

    Article  PubMed  Google Scholar 

  17. Deyo RA, Weinstein JN. Low back pain. N Engl J Med. 2001;344(5):363–70.

    Article  CAS  PubMed  Google Scholar 

  18. Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine. 1995;20(17):1878–83.

    Article  CAS  PubMed  Google Scholar 

  19. Carragee EJ, Tanner CM, Yang B, Brito JL, Truong T. False-positive findings on lumbar discography. Reliability of subjective concordance assessment during provocative disc injection. Spine. 1999;24(23):2542–7.

    Article  CAS  PubMed  Google Scholar 

  20. Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino JA, Herzog R. 2009 ISSLS prize winner: does discography cause accelerated progression of degeneration changes in the lumbar disc: a ten-year matched cohort study. Spine. 2009;34(21):2338–45.

    Article  PubMed  Google Scholar 

  21. Borthakur A, Maurer PM, Fenty M, Wang C, Berger R, Yoder J, Balderston RA, Elliott DM. T1rho magnetic resonance imaging and discography pressure as novel biomarkers for disc degeneration and low back pain. Spine. 2011;36(25):2190–6.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wang YX, Zhao F, Griffith JF, Mok GS, Leung JC, Ahuja AT, Yuan J. T1rho and T2 relaxation times for lumbar disc degeneration: an in vivo comparative study at 3.0-Tesla MRI. Eur Radiol. 2013;23(1):228–34.

    Article  PubMed  Google Scholar 

  23. Bogduk N, Tynan W, Wilson AS. The nerve supply to the human lumbar intervertebral discs. J Anat. 1981;132(Pt 1):39–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Bogduk N. The innervation of the lumbar spine. Spine. 1983;8(3):286–93.

    Article  CAS  PubMed  Google Scholar 

  25. Kojima Y, Maeda T, Arai R, Shichikawa K. Nerve supply to the posterior longitudinal ligament and the intervertebral disc of the rat vertebral column as studied by acetylcholinesterase histochemistry. I. Distribution in the lumbar region. J Anat. 1990;169:237–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Kojima Y, Maeda T, Arai R, Shichikawa K. Nerve supply to the posterior longitudinal ligament and the intervertebral disc of the rat vertebral column as studied by acetylcholinesterase histochemistry. II. Regional differences in the distribution of the nerve fibres and their origins. J Anat. 1990;169:247–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Takebayashi T, Cavanaugh JM, Kallakuri S, Chen C, Yamashita T. Sympathetic afferent units from lumbar intervertebral discs. J Bone Joint Surg Br. 2006;88(4):554–7.

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura S, Takahashi K, Takahashi Y, Morinaga T, Shimada Y, Moriya H. Origin of nerves supplying the posterior portion of lumbar intervertebral discs in rats. Spine. 1996;21(8):917–24.

    Article  CAS  PubMed  Google Scholar 

  29. Ohtori S, Takahashi Y, Takahashi K, Yamagata M, Chiba T, Tanaka K, Hirayama J, Moriya H. Sensory innervation of the dorsal portion of the lumbar intervertebral disc in rats. Spine. 1999;24(22):2295–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Sensory innervation of the dorsal portion of the lumbar intervertebral discs in rats. Spine. 2001;26(8):946–50.

    Article  CAS  PubMed  Google Scholar 

  31. Inoue G, Ohtori S, Aoki Y, Ozawa T, Doya H, Saito T, Ito T, Akazawa T, Moriya H, Takahashi K. Exposure of the nucleus pulposus to the outside of the anulus fibrosus induces nerve injury and regeneration of the afferent fibers innervating the lumbar intervertebral discs in rats. Spine. 2006;31(13):1433–8.

    Article  PubMed  Google Scholar 

  32. Yamashita T, Minaki Y, Oota I, Yokogushi K, Ishii S. Mechanosensitive afferent units in the lumbar intervertebral disc and adjacent muscle. Spine. 1993;18(15):2252–6.

    Article  CAS  PubMed  Google Scholar 

  33. Sekine M, Yamashita T, Takebayashi T, Sakamoto N, Minaki Y, Ishii S. Mechanosensitive afferent units in the lumbar posterior longitudinal ligament. Spine. 2001;26(14):1516–21.

    Article  CAS  PubMed  Google Scholar 

  34. Carragee EJ, Hannibal M. Diagnostic evaluation of low back pain. Orthop Clin North Am. 2004;35(1):7–16.

    Article  PubMed  Google Scholar 

  35. Carragee EJ, Paragioudakis SJ, Khurana S. 2000 Volvo Award winner in clinical studies: lumbar high-intensity zone and discography in subjects without low back problems. Spine. 2000;25(23):2987–92.

    Article  CAS  PubMed  Google Scholar 

  36. Blumenkrantz G, Zuo J, Li X, Kornak J, Link TM, Majumdar S. In vivo 3.0-tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med. 2010;63(5):1193–200.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

No funds were received in support of this work. No benefits in any form have been or will be received from commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izaya Ogon.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogon, I., Takebayashi, T., Takashima, H. et al. Analysis of chronic low back pain with magnetic resonance imaging T2 mapping of lumbar intervertebral disc. J Orthop Sci 20, 295–301 (2015). https://doi.org/10.1007/s00776-014-0686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-014-0686-0

Keywords

Navigation