Skip to main content

Advertisement

Log in

Quantitative analysis of Staphylococcus epidermidis biofilm on the surface of biomaterial

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

Staphylococcus epidermidis biofilm is considered to be an important cause of device-related infection. Polysaccharide intercellular adhesin (PIA), encoded by the icaADBC locus, has been found to be a functional component of S. epidermidis biofilm, but the sequential change of the ica gene expression during biofilm development is still unclear. We have established a quantitative experiment of biofilm formation on nontranslucent biomaterial surfaces using the biofilm coverage rate (BCR). In this study, we quantified the time course of biofilm formation on a biomaterial (stainless steel) surface by means of BCR, viable cell count (VCC) with colony-forming units, and ATP-bioluminescence (ATP) as relative light units, and investigated the time-course relationship between biofilm development process and ica gene expression using reverse transcription-polymerase chain reaction (RT-PCR).

Methods

S. epidermidis RP62A was inoculated on stainless steel washers and incubated for 0-8, 24, and 48 h. Biofilms attached to the washers were quantified by means of BCR, VCC, and ATP. RT-PCR of the ica gene was performed using total RNA isolated from biofilms at each incubation period. Results of these methods were compared.

Results

The amount of biofilms measured by BCR increased over time and particularly grew at 5–6 h into the incubation period. On the other hand, the results of VCC and ATP increased gradually, and at 24 h or 48 h the measurement values were very much greater than previously. Up to 8 h, there were significant correlations between BCR and VCC or ATP. The growth of BCR until 6 h is supported by RT-PCR of the ica gene.

Conclusions

Compared with each result, two-dimensional biofilm occupation on a biomaterial surface is proposed to be rapidly completed within 6–8 h after bacterial attachment. Our data indicate that bacterial biofilms first grow two dimensionally with a producing matrix, and subsequently grow vertically and become mature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rupp ME, Archer GL. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 1994;19:231–243; quiz 244–5.

    CAS  PubMed  Google Scholar 

  2. Mack D, Davies AP, Harris LG, Rohde H, Horstkotte MA, Knobloch JK. Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal Chem 2007;387:399–408.

    Article  CAS  PubMed  Google Scholar 

  3. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–1322.

    Article  CAS  PubMed  Google Scholar 

  4. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135–138.

    Article  CAS  PubMed  Google Scholar 

  5. Gristina AG, Costerton JW. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am 1985;67:264–273.

    CAS  PubMed  Google Scholar 

  6. Nishimura S, Tsurumoto T, Yonekura A, Adachi K, Shindo H. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus epidermidis biofilms isolated from infected total hip arthroplasty cases. J Orthop Sci 2006;11:46–50.

    Article  CAS  PubMed  Google Scholar 

  7. O’Gara JP. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 2007;270:179–188.

    Article  PubMed  Google Scholar 

  8. Conlon KM, Humphreys H, O’Gara JP. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 2002;184:4400–4408.

    Article  CAS  PubMed  Google Scholar 

  9. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007;28:1711–1720.

    Article  CAS  PubMed  Google Scholar 

  10. Cramton SE, Ulrich M, Gotz F, Doring G. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 2001;69:4079–4085.

    Article  CAS  PubMed  Google Scholar 

  11. Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JK, Horstkotte MA, Mack D. Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 2003;185:2879–2886.

    Article  CAS  PubMed  Google Scholar 

  12. Olson ME, Garvin KL, Fey PD, Rupp ME. Adherence of Staphylococcus epidermidis to biomaterials is augmented by PIA. Clin Orthop Relat Res 2006;451:21–24.

    Article  CAS  PubMed  Google Scholar 

  13. Resch A, Rosenstein R, Nerz C, Gotz F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 2005;71:2663–2676.

    Article  CAS  PubMed  Google Scholar 

  14. Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J. Expression of biofilm-associated genes in Staphylococcus epidermidis during in vitro and in vivo foreign body infections. J Infect Dis 2003;188:730–737.

    Article  CAS  PubMed  Google Scholar 

  15. Donlan RM. New approaches for the characterization of prosthetic joint biofilms. Clin Orthop Relat Res 2005;427:12–19.

    Article  Google Scholar 

  16. Patel JD, Ebert M, Ward R, Anderson JM. S. epidermidis biofilm formation: effects of biomaterial surface chemistry and serum proteins. J Biomed Mater Res A 2007;80:742–751.

    PubMed  Google Scholar 

  17. Sheehan E, McKenna J, Mulhall KJ, Marks P, McCormack D. Adhesion of Staphylococcus to orthopaedic metals: an in vivo study. J Orthop Res 2004;22:39–43.

    Article  CAS  PubMed  Google Scholar 

  18. Amorena B, Gracia E, Monzon M, Leiva J, Oteiza C, Perez M, et al. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 1999;44:43–55.

    Article  CAS  PubMed  Google Scholar 

  19. Gracia E, Fernandez A, Conchello P, Lacleriga A, Paniagua L, Seral F, Amorena B. Adherence of Staphylococcus aureus slime-producing strain variants to biomaterials used in orthopaedic surgery. Int Orthop 1997;21:46–51.

    Article  CAS  PubMed  Google Scholar 

  20. Adachi K, Tsurumoto T, Yonekura A, Nishimura S, Kajiyama S, Hirakata Y, Shindo H. New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials. J Orthop Sci 2007;12:178–184.

    Article  PubMed  Google Scholar 

  21. Knobloch JK, Von Osten H, Horstkotte MA, Rohde H, Mack D. Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and -negative Staphylococcus epidermidis. Med Microbiol Immunol 2002;191:107–114.

    Article  CAS  PubMed  Google Scholar 

  22. Bowers WH, Wilson FC, Greene WB. Antibiotic prophylaxis in experimental bone infections. J Bone Joint Surg Am 1973;55:795–807.

    CAS  PubMed  Google Scholar 

  23. Worlock P, Slack R, Harvey L, Mawhinney R. The prevention of infection in open fractures. An experimental study of the effect of antibiotic therapy. J Bone Joint Surg Am 1988;70:1341–1347.

    CAS  PubMed  Google Scholar 

  24. Jaeger M, Maier D, Kern WV, Sudkamp NP. Antibiotics in trauma and orthopedic surgery: a primer of evidence-based recommendations. Injury 2006;37(suppl 2):S74–80.

    Article  PubMed  Google Scholar 

  25. Handke LD, Conlon KM, Slater SR, Elbaruni S, Fitzpatrick F, Humphreys H, et al. Genetic and phenotypic analysis of biofilm phenotypic variation in multiple Staphylococcus epidermidis isolates. J Med Microbiol 2004;53:367–374.

    Article  CAS  PubMed  Google Scholar 

  26. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol 1995;49:711–745.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi N, Bauer TW, Tuohy MJ, Fujishiro T, Procop GW. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant. Clin Orthop Relat Res 2007;457:210–213.

    PubMed  Google Scholar 

  28. Vandecasteele SJ, Peetermans WE, Carbonez A, Van Eldere J. Metabolic activity of Staphylococcus epidermidis is high during initial and low during late experimental foreign-body infection. J Bacteriol 2004;186:2236–2239.

    Article  CAS  PubMed  Google Scholar 

  29. Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J. Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 2001;183:7094–7101.

    Article  CAS  PubMed  Google Scholar 

  30. Hudetz D, Ursic Hudetz S, Harris LG, Luginbuhl R, Friederich NF, Landmann R. Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants. Clin Microbiol Infect 2008;14:1135–1145.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kajiyama, S., Tsurumoto, T., Osaki, M. et al. Quantitative analysis of Staphylococcus epidermidis biofilm on the surface of biomaterial. J Orthop Sci 14, 769–775 (2009). https://doi.org/10.1007/s00776-009-1405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-009-1405-0

Keywords

Navigation