Skip to main content
Log in

Nitric oxide, chronic iron and copper overloads and regulation of redox homeostasis in rat liver

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Iron [Fe(II)] and copper [Cu(II)] ions produced liver oxidative stress and damage, and as a consequence, changes in the antioxidant protection. The objective of this work is to evaluate whether control of redox homeostasis in chronic overload of Fe(II) and Cu(II) is associated with nitric oxide (NO) and antioxidant enzymes protection in liver. Male Sprague–Dawley rats of 80–90 g received the standard diet ad libitum and drinking water supplemented with either 1.0 g/L of ferrous chloride (0.1% w/v, n = 24) or 0.5 g/L cupric sulfate (0.05% w/v, n = 24) for 42 days. The activities of the enzymes involved in the control of cellular redox homeostasis, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx), were determined by spectrophotometric methods, and NO production was determined by the determination of nitrite levels in liver. Chronic overload with Fe(II) and Cu(II) led to a significant increase of NO production while hampering the activity of NADPH oxidase. Meanwhile, the animals supplemented with Fe(II) showed a decrease in SOD and Gpx activities in liver homogenates with respect to baseline activity after 7 days of treatment, whereas the rats which received Cu(II) showed an increased SOD and catalase activity after 28 and 7 days of chronic overload. Further research is required to understand whether the modulation of the activity of these enzymes upon Cu and Fe overload is involved in a common toxic pathway or may serve to control the steady state of oxidant species related to redox signaling pathways.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMP:

5′-Adenosine monophosphate

AMPK:

AMP-activated protein kinase

ATOX1:

Antioxidant chaperone for copper 1

C50 :

Metal content necessary to produce the half of the maximal effect

c-GMP:

Cyclic guanosine monophosphate

CSS:

Copper chaperone for superoxide dismutase

eNOS:

Endothelial nitric oxide synthase

GPx:

Glutathione peroxidase

GSH:

Glutathione

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

HO· :

Hydroxyl radical

iNOS:

Inducible nitric oxide synthase

NADPH:

Nicotinamide adenine dinucleotide phosphate oxidase

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

O2 :

Oxygen

O2 :

Superoxide anion

1O2 :

Singlet oxygen

ROOH:

Organic hydroperoxides

ROO. :

Hydroperoxyl radical

SOD:

Superoxide dismutase

SOD1:

Cu,Zn-SOD (cytosolic SOD)

SOD2:

Mn-SOD (mitochondrial SOD)

t 1/2 :

Time necessary to produce the half of the maximal effect

References

  1. Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315. https://doi.org/10.1146/annurev.bi.56.070187.001445

    Article  CAS  PubMed  Google Scholar 

  2. Liu ZX, Theil EC (2005) Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res 38:167–175. https://doi.org/10.1021/ar0302336

    Article  CAS  PubMed  Google Scholar 

  3. Lalioti V, Sandoval I, Cassio D, Duclos-Vallée J (2010) Molecular pathology of Wilson’s disease: a brief. J Hepatol 53:151–1153. https://doi.org/10.1016/j.jhep.2010.07.008

    Article  Google Scholar 

  4. Van den Berghe PV, Folmer DE, Malingre HE, van Beurden E, Klomp AEM, van de Sluis B, Merkx M, Berger R, Klomp LWJ (2007) Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem J 407:49–59. https://doi.org/10.1042/BJ20070705

    Article  PubMed  Google Scholar 

  5. Harris DIM, Sass-Kortsak A (1967) The influence of amino acids on copper uptake by rat liver slices. J Clin Investig 46:659–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Musacco-Sebio R, Saporito-Magriñá C, Semprine J, Torti H, Ferrarotti N, Castro-Parodi M, Damiano A, Boveris A, Repetto MG (2014) Rat liver antioxidant response to iron and copper overloads. J Inorg Biochem 137:94–100. https://doi.org/10.1016/j.jinorgbio.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  7. Musacco-Sebio R, Ferrarotti N, Saporito-Magriñá C, Fuda J, Torti H, Lairión F, Boveris A, Repetto MG (2019) Redox dyshomeostasis in the experimental chronic hepatic overloads with iron or copper. J Inorg Biochem 191:119–125. https://doi.org/10.1016/j.jinorgbio.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  8. Boveris A, Cadenas E, Reiter R, Filipkowski M, Nakase Y, Chance B (1980) Organ chemiluminescence: noninvasive assay for oxidative radical reactions. Proc Natl Acad Sci USA 177:347–351. https://doi.org/10.1073/pnas.77.1.347

    Article  Google Scholar 

  9. Vitale AA, Bernatene EA, Vitale MG, Pomilio AB (2016) New insights of the Fenton reaction using glycerol as the experimental model. Effect of O2, inhibition by Mg(2+), and oxidation state of Fe. J Phys Chem A 120:5435–5445. https://doi.org/10.1021/acs.jpca.6b03805

    Article  CAS  PubMed  Google Scholar 

  10. Wiegand HL, Orths CT, Kerpen K, Lutze HV, Schmidt TC (2017) Investigation of the iron-peroxo complex in the fenton reaction: kinetic indication, decay kinetics, and hydroxyl radical yields. Environ Sci Technol 51:14321–14329. https://doi.org/10.1021/acs.est.7b03706

    Article  CAS  PubMed  Google Scholar 

  11. Musacco-Sebio R, Saporito-Magriñá C, Acosta JM, Boveris A, Repetto MG (2017) Iron and copper toxicity in rat liver: a kinetic and holistic overview. Liver Res Open J. https://doi.org/10.17140/LROJ-2-110

    Article  Google Scholar 

  12. Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, Drysdale J (2001) A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276:24437–24440. https://doi.org/10.1074/jbc.C100141200

    Article  CAS  PubMed  Google Scholar 

  13. Walker J, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959. https://doi.org/10.1074/jbc.M203845200

    Article  CAS  PubMed  Google Scholar 

  14. Nuttall KL, Palaty J, Lockitch G (2003) Reference limits for copper and iron in liver biopsies. J Ann Clin Lab Sci 33:443–450

    CAS  Google Scholar 

  15. Adams PC, Bradley C, Henderson AR (1997) Evaluation of the hepatic iron index as a diagnostic criterion for genetic hemochromatosis. J Lab Clin Med 130:509–514. https://doi.org/10.1016/S0022-2143(97)90127-X

    Article  CAS  PubMed  Google Scholar 

  16. Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS (2011) Diagnosis and management of hemochromatosis: 2011 practice guideline. Hepatology 54:328–343. https://doi.org/10.1002/hep.24330

    Article  PubMed  Google Scholar 

  17. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Wilson’s disease. Lancet 369:397–408. https://doi.org/10.1016/S0140-6736(07)60196-2

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez-Castro KI, Hevia-Urrutia FJ, Sturniolo G (2015) Wilson’s disease: a review of what we have learned. World J Hepatol 7:2859–2870. https://doi.org/10.4254/wjh.v7.i29.2859

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4(6):624–630

    PubMed  PubMed Central  Google Scholar 

  20. Flecknell P (2009) Anaesthesia of common laboratory species: special considerations. Small rodents. In: Laboratory animal anaesthesia, 3rd edn. Academic Press, Elsevier, London

    Google Scholar 

  21. Leary S, Underwood W, Anthony R, Cartner S, Corey D, Grandin T, Greenacre C, Gwaltrey-Brant S, Mc Crackin MA, Meyer R, Miller D, Shearer J, Yanong R (2013) Methods of euthanasia by species and environment. Laboratory animals. In: AVMA guidelines for the euthanasia of animals. American Veterinary Medical Association, Schaumburg

  22. Skoog D, West D, Holler F (2014) Fundamentos de Química Analítica. McGraw-Hill, México

    Google Scholar 

  23. Callaghan J, Gutman S (2006) Counterpoint: food and drug administration guidance for C-reactive protein assays: matching claims with performance data. Clin Chem 52:1256–1257. https://doi.org/10.1373/clinchem.2006.072009

    Article  CAS  PubMed  Google Scholar 

  24. González Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100. https://doi.org/10.1016/0891-5849(91)90002-k

    Article  PubMed  Google Scholar 

  25. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–627. https://doi.org/10.1042/bj1280617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boveris A, Musacco-Sebio R, Ferrarotti N, Saporito-Magriñá C, Torti H, Massot F, Repetto MG (2012) The acute toxicity of iron and copper: biomolecule oxidation and oxidative damage in rat liver. J Inorg Biochem 116:63–69. https://doi.org/10.1016/j.jinorgbio.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  27. Ding AH, Nathan CF, Stuehr DJ (1998) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412. https://doi.org/10.1167/iovs.15-16864

    Article  CAS  Google Scholar 

  28. Wei Y, Sowers J, Nistala R, Gong H, Uptergrove G, Clark S, Morris M, Szary N, Manrique C, Stump C (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281:35137–35146. https://doi.org/10.1074/jbc.m601320200

    Article  CAS  PubMed  Google Scholar 

  29. McCord J, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuprein hemocuprein. J Biol Chem 244:049–6055

    Google Scholar 

  30. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  31. Aebi H (1984) Catalase in vitro. Method Enzymol 10:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  Google Scholar 

  32. Chance B (1954) Determination of catalase activity. In: Glick J (ed) Methods of biochemical analysis. Interscience Publishers, New York

    Google Scholar 

  33. Wendel A (1981) Glutathione peroxidase. Method Enzymol 77:325–333. https://doi.org/10.1016/s0076-6879(81)77046-0

    Article  CAS  Google Scholar 

  34. Semprine J, Ferrarotti N, Musacco-Sebio R, Saporito-Magriñá C, Fuda J, Torti H, Castro-Parodi M, Damiano A, Boveris A, Repetto MG (2014) Brain antioxidant responses to acute iron and copper intoxications in rats. Metallomics 6:2083–2089. https://doi.org/10.1039/c4mt00159a

    Article  CAS  PubMed  Google Scholar 

  35. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  36. Rao P, Hayon E (1973) Experimental determination of the redox potential of the superoxide radical O2. Biochem Biophys Res Commun 51:468–473. https://doi.org/10.1016/0006-291X(73)91280-1

    Article  CAS  PubMed  Google Scholar 

  37. Carter D (2005) Environ Health Perspect 103:17–20

    Google Scholar 

  38. Boveris A, Cadenas E (1997) Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz-Clerch L, Massaro DJ (eds) Oxygen, gene expression and cellular function. Marcel Dekker, New York

    Google Scholar 

  39. Saporito Magriñá CM, Musacco Sebio RN, Andrieux G, Kook L, Orrego MT, Tuttolomondo MV, Desimone MF, Boerries M, Borner C, Repetto MG (2018) Copper-induced cell death and the protective role of glutathione: the implication of impaired protein folding rather than oxidative stress. Metallomics 10(12):1743–1754. https://doi.org/10.1039/c8mt00182k

    Article  CAS  PubMed  Google Scholar 

  40. Nordberg J, Arner E (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312. https://doi.org/10.1016/s0891-5849(01)00724-9

    Article  CAS  PubMed  Google Scholar 

  41. Boveris A, Repetto MG, Bustamante J, Boveris AD, Valdez L (2008) The concept of oxidative stress in pathology. In: Alvarez S, Evelson P, Boveris A (eds) Free radical pathophysiology. Research Signpost, Kerala

    Google Scholar 

  42. Sies H (2016) The concept of oxidative stress after 30 years. In: Gelpi RJ, Boveris A, Poderoso JJ (eds) Biochemistry of oxidative stress. Springer, Switzerland. https://doi.org/10.1007/978-3-319-45865-6_1

    Chapter  Google Scholar 

  43. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S-38S. https://doi.org/10.1016/0002-9343(91)90281-2

    Article  CAS  PubMed  Google Scholar 

  44. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boveris A, Poderoso JJ (2000) In: Ignaro (ed) Nitric oxide. Biology and pathobiology. Academic Press, Los Angeles

  46. Finkel T (2000) Redox dependent signal transduction. FEBS Lett 476:52–54. https://doi.org/10.1016/S0014-5793(00)01669-0

    Article  CAS  PubMed  Google Scholar 

  47. Bedard K, Krause K (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  48. Bastian N, Hibbs J (1994) Assambly and regulation of NADPH oxidase and nitric oxidase synthase. Curr Opin Immunol 6:131–139

    Article  CAS  PubMed  Google Scholar 

  49. Ansari H, Roberts K, Scheff S (2014) A time course of NADPH-oxidase up-regulation and endothelial nitric oxide synthase activation in the hippocampus following neurotrauma. Free Radic Biol Med 77:21–29. https://doi.org/10.1016/J.freeradbiomed.2014.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qian J, Chen F, Kovalenkou Y, Pandey D, Moseleley M, Foster M, Black S, Venema R, Stopp D, Fultn D (2012) Nitric oxide reduces NADPH oxidase 5 (NOX 5) activity by reversible S-nitrosylation. Free Radic Biol Med 52:1806–1819. https://doi.org/10.1016/J.freeradbiomed.2012.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cordero-Herrera I, Kozyra M, Zhuge Z, McCann Z, Moretti C, Peleli M, Caldeira-Dias M, Jahandideh A, Huirong H, de Campos CJ, Kleschyov A, Montenegro M, Ingelman-Sundberg M, Weitzberg E, Lundberg J, Carlstroma M (2019) AMP-activated protein kinase activation and NADPH oxidase inhibition by inorganic nitrate and nitrite prevent liver steatosis. Proc Natl Acad Sci U S A 116(1):217–226. https://doi.org/10.1073/pnas.1809406115

    Article  CAS  PubMed  Google Scholar 

  52. Fridovich I (1974) Superoxide dismutases. Adv Enzymol 41:35–97. https://doi.org/10.1002/9780470122860.ch2

    Article  CAS  PubMed  Google Scholar 

  53. Brown N, Torres A, Doan P, O´Halloran T (2004) Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. PNAS 101:5518–5523. https://doi.org/10.1073/pnas.0401175101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ozcelik D, Ozares R, Gurel Z, Uzun H, Aydin S (2003) Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. Biol Trace Elem Res 96:209–215. https://doi.org/10.1073/pnas.0401175101

    Article  CAS  PubMed  Google Scholar 

  55. Sansinanea AS, Cerone SI, Streitenberger SA, García C, Auza N (1998) Oxidative effect of hepatic copper overload. Acta Physiol Pharmacol Ther Latinoam 48:25–31

    CAS  PubMed  Google Scholar 

  56. Zhang SS, Noordin MM, Rahman SO, Haron J (2000) Effects of copper overload on hepatic lipid peroxidation and antioxidant defense in rats. Vet Hum Toxicol 42:261–264

    CAS  PubMed  Google Scholar 

  57. Repetto M, Ferrarotti N, Boveris A (2010) The involvement of transition metal ions on iron depended lipid peroxidation. Arch Toxicol 84:255–262

    Article  CAS  PubMed  Google Scholar 

  58. Russanov EM, Kassabova TA, Konstantinova SG, Balevska PS (1986) Effect of chronic copper loading on the activity of rat liver antioxidative enzymes. Acta Physiol Pharmacol Bulg 12:51–56

    CAS  PubMed  Google Scholar 

  59. Ossola JO, Groppa MD, Tomaro ML (1997) Heme oxygenase induction by menadione bisulfite adduct-generated oxidative stress in rat liver. Arch Biochem Biophys 337:332–337. https://doi.org/10.1016/s0742-8413(00)00133-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Professor Alberto Boveris for his teachings and scientific contributions at the beginning of this research work, guiding the development of this experimental line. This study was supported by grants from the University of Buenos Aires (UBACyT 20020170100197BA); the National Research Council of Argentina (CONICET) and the National Agency of Science and Technology of Argentina (ANPCYT) (PICT-2016-002077).

Author information

Authors and Affiliations

Authors

Contributions

FL: validation, formal analysis, investigation, and writing—original–draft; CS-M: methodology, validation, investigation, and visualization; RM-S: methodology and investigation; JF: investigation; HT: investigation and resources; MGR: conceptualization, formal analysis, and writing—original–draft, writing, review and editing, project administration, and funding acquisition.

Corresponding author

Correspondence to Marisa Gabriela Repetto.

Ethics declarations

Conflict of interest

None of the authors has anything to disclose regarding the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lairion, F., Saporito-Magriñá, C., Musacco-Sebio, R. et al. Nitric oxide, chronic iron and copper overloads and regulation of redox homeostasis in rat liver. J Biol Inorg Chem 27, 23–36 (2022). https://doi.org/10.1007/s00775-021-01908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01908-1

Keywords

Navigation