Skip to main content
Log in

The role of zinc and its compounds in leukemia

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Zinc is one of the most important microelements necessary for normal body functioning. Zinc is marked in numerous diseases and, hence, its properties and behavior in the body have long been a subject of extensive study. This review considers trends in the assessment of the role of zinc and its compounds in the past decade. It becomes evident that redox-inactive zinc is the main supervisor in the conformation of the most important molecules in all body organs and tissues. We placed emphasis on the variety of zinc-binding sites and the role of zinc in the genesis and progress of different forms of leukemia. The importance of some families of transcription factors in the development and prognosis of treatment of various leukemia forms is examined; new directions of these studies are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(copied from our paper [1])

Fig. 2
Fig. 3
Fig. 4
Fig. 5

(copied from [137])

Similar content being viewed by others

References

  1. Orlova MA, Orlov AP (2011) Role of zinc in an organism and its influence on processes leading to apoptosis. Br J Med Med Res 1:239–305

    Article  Google Scholar 

  2. Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G (2009) Copper, Iron and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685

    Article  CAS  Google Scholar 

  3. Lee Y, Lin Y, Lima C (2014) Factors controlling the role of Zn and reactivity of Zn-bound cysteines in proteins: application to drug target discovery. J Chin Chem Soc 61:142–150

    Article  CAS  Google Scholar 

  4. Maret W (2012) New perspectives of zinc coordination environments in proteins. J Inorg Biochem 111:110–116

    Article  CAS  PubMed  Google Scholar 

  5. Iuchi S, Kuldell N (2005) Zinc finger proteins: from atomic contact to cellular function. Kluwer Acad., Norwell

    Book  Google Scholar 

  6. Zhong L, Wang L, Xu L, Liu Q, Jiang L, Zhi Y, Lu W, Zhou P (2014) The role of nitric oxide synthase signaling pathway in the Zn-induced cellular responses in MCF-7 cells. Environ Toxicol Pharmacol 38:783–791

    Article  CAS  PubMed  Google Scholar 

  7. Colvin RA, Holmes WR, Fontainea CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  CAS  PubMed  Google Scholar 

  8. Zaichick S, Zaichick V (2011) The Br, Fe, Rb, Sr, and Zn contents and interrelation in intact and morphologic normal prostate tissue of adult men investigated by energy-dispersive X-ray fluorescent analysis. X-Ray Spectrom 40:464–469

    Article  CAS  Google Scholar 

  9. Istrate AN, Kozin SA, Zhokhov SS, Mantsyzov AB, Kechko OI, Polshako VI (2016) Interplay of histidine residues of the Alzheimers disease A peptide governs its Zn induced oligomerization. Sci Rep 6:21734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trisak ST, Doumgdee P, Rode BM (1990) Binding of zinc and cadmium to human serum albumin. Int J Biochem 22:977–981

    Article  CAS  PubMed  Google Scholar 

  11. Yongqia Z, Xuying H, Chao D, Hong L, Sheyi W, Panwen S (1992) Structural studies on metal-serum albumin. IV. The interaction of Zn(II), Cd(II) and Hg(II) with HSA and BSA. Biophys Chem 42:201–211

    Article  Google Scholar 

  12. Parr RG, Pearson RN (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7515

    Article  CAS  Google Scholar 

  13. Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24:411–418

    Article  CAS  PubMed  Google Scholar 

  14. Maret W, Larsen KS, Vallee BL (1997) Coordination dynamics of biological zinc “clusters” in metallothioneins and in the DNA-binding domain of the transcription factor Gal4. Proc Natl Acad Sci USA 94:2233–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci USA 95:3489–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Auld DS (2009) Zinc-binding sites in proteins. Biometals 22:141–148

    Article  CAS  PubMed  Google Scholar 

  18. Piatek K, Hartwig A, Bal W (2009) Physiological levels of glutathione enhance Zn(II) binding by a Cys4 zinc finger. Biochem Biophys Res Commun 389:265–268

    Article  CAS  PubMed  Google Scholar 

  19. Arner ES (2009) Focus on mammalian thioredoxin reductases: important selenoproteins with versatile functions. Biochim Biophys Acta 1790:495–526

    Article  CAS  PubMed  Google Scholar 

  20. Shao L, Diccianni MB, Tanaka T, Gribi R, Yu AL et al (2001) Thioredoxin expression in primary T-cell acute lymphoblastic leukemia and its therapeutic implication. Cancer Res 61:7333–7338

    CAS  PubMed  Google Scholar 

  21. Arner ES, Holmgren A (2006) The thioredoxin system in cancer. Semin Cancer Biol 16:420–426

    Article  CAS  PubMed  Google Scholar 

  22. Smart DK, Ortiz KL, Mattson D, Bradbury CM, Bisht KS et al (2004) Thioredoxin reductase as a potential molecular target for anticancer agents that induce oxidative stress. Cancer Res 64:6716–6724

    Article  CAS  PubMed  Google Scholar 

  23. Lu J, Stewart AJ, Sadler PJ, Pinheiro TJT, Blindauer CA (2008) Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans 36:1317–1321

    Article  CAS  PubMed  Google Scholar 

  24. Bal W, Sokołowska M, Kurowska E, Faller P (2013) Human serum albumin: a multifunctional protein. Biochim Biophys Acta 1830:5444–5455

    Article  CAS  PubMed  Google Scholar 

  25. Harford C, Sarkar B (1997) Amino terminal Cu(II)-and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc Chem Res 30:123–130

    Article  CAS  Google Scholar 

  26. Fanali G, Cao Y, Ascenzi P, Fasano M (2012) Mn(II) binding to human serum albumin: a 1H-NMR relaxometric study. J Inorg Biochem 117:198–203

    Article  CAS  PubMed  Google Scholar 

  27. Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ (2003) Interdomain zinc site on human albumin. Proc Natl Acad Sci USA 100:3701–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446

    Article  CAS  PubMed  Google Scholar 

  29. Blindauer CA, Harvey I, Bunyan KE, Stewart AJ, Sleep D, Harrison DJ, Berezenko S, Sadler PJ (2009) Structure, properties and engineering of the major zinc binding site on human albumin. J Biol Chem 284:23116–23124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pace NJ, Weerapana E (2014) A competitive chemical-proteomic platform to identify zinc-binding cysteines. ACS Chem Biol 9:258–265

    Article  CAS  PubMed  Google Scholar 

  31. André C, Guillaume YC (2004) Zinc–human serum albumin association: testimony of two binding sites. Talanta 63:503–508

    Article  PubMed  CAS  Google Scholar 

  32. Bal W, Christodoulou J, Sadler PJ, Tucker A (1998) Multi-metal binding site of serum albumin. J Inorg Biochem 70:33–39

    Article  CAS  PubMed  Google Scholar 

  33. Ackland ML, McArdle HJ (1990) Significance of extracellular zinc-binding ligands in the uptake of zinc by human fibroblasts. J Cell Physiol 145:409–413

    Article  CAS  PubMed  Google Scholar 

  34. Gálvez M, Moreno JA, Elόsegui LM, Escanero JF (2001) Zinc uptake by human erythrocytes with and without serum albumin in the medium. Biol Trace Elem Res 84:45–56

    Article  PubMed  Google Scholar 

  35. Hu W, Luo Q, Wu K, Li X, Wang F, Chen Y, Ma X, Wang J, Liu J, Xiong S, Sadler PJ (2011) The anticancer drug cisplatin can cross-link the interdomain zinc site on human albumin. Chem Commun 47:6006–6008

    Article  CAS  Google Scholar 

  36. Maurmann L, Bose RN (2010) Unwinding of zinc finger domain of DNA polymerase I by cis-diamminedichloroplatinum(II). Dalton Trans 39:7968–7979

    Article  CAS  PubMed  Google Scholar 

  37. Gomez E, del Diego C, Orden I, Elosegui LM, Borque L, Escanero JF (2000) Longitudinal study of serum copper and zinc levels and their distribution in blood proteins after acute myocardial infarction. J Trace Elem Med Biol 14:65–70

    Article  CAS  PubMed  Google Scholar 

  38. Barnett JP, Blindauer CA, Kassaar O, Khazaipoul S, Martin EM, Sadler PJ, Stewart AJ (2013) Allosteric modulation of zinc speciation by fatty acids. Biochim Biophys Acta 1830:5456–5464

    Article  CAS  PubMed  Google Scholar 

  39. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75:367–390

    Article  CAS  PubMed  Google Scholar 

  40. Leszczyszyn O, Blindauer CA (2010) Zinc transfer from the embryo-specific metallothionein EC from wheat: a case study. Phys Chem Chem Phys 12:13408

    Article  CAS  PubMed  Google Scholar 

  41. Blindauer CA, Leszczyszyn OI (2010) Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 27:720–741

    Article  CAS  PubMed  Google Scholar 

  42. Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 22:149–157

    Article  CAS  PubMed  Google Scholar 

  43. Jiang L, Maret W, Vallee BL (1998) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci USA 95:3483–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang L, Maret W, Vallee BL (1998) The ATP–metallothionein complex. Proc Natl Acad Sci USA 95:9146–9149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng W, Cai J, Pierce WM, Franklin RB, Maret W, Benz FW, Kang YJ (2005) Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochem Biophys Res Commun 332:853–858

    Article  CAS  PubMed  Google Scholar 

  46. Pinter TBJ, Stillman MJ (2015) Kinetics of zinc and cadmium exchanges between metallothionein and carbonic anhydrase. Biochemistry 54:6284–6293

    Article  CAS  PubMed  Google Scholar 

  47. Maret W (2010) Inhibitory zinc sites in enzymes. Metallomics 2:117–125

    Article  CAS  PubMed  Google Scholar 

  48. Krezel A, Maret W (2007) Different redox states of metallothionein/thionein in biological tissue. Biochem J 402:551–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zalewska M, Trefon J, Milnerowicz H (2014) The role of metallothionein interactions with other proteins. Proteomics 14:1343–1356

    Article  CAS  PubMed  Google Scholar 

  50. Ugajin T, Nishida K, Yamasaki S, Suzuki J, Mita M, Kubo M, Yokozeki H, Hirano T (2015) Zinc-binding metallothioneins are key modulators of IL-4 production by basophils. Mol Immunol 66:180–188

    Article  CAS  PubMed  Google Scholar 

  51. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    Article  CAS  PubMed  Google Scholar 

  52. Oteiza PI, Mackenzie GG (2005) Zinc, oxidant-triggered cell signaling and human health. Mol Aspects Med 26:245–255

    Article  CAS  PubMed  Google Scholar 

  53. Kroncke KD (2001) Zinc finger proteins as molecular targets for nitric oxide-mediated gene regulation. Antioxid Redox Signal 3:565–575

    Article  CAS  PubMed  Google Scholar 

  54. Quintal SM, dePaula QA, Farrell NF (2011) Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 3:121–139

    Article  CAS  PubMed  Google Scholar 

  55. Burger AM, Gao YG, Amemiya Y, Kahn HJ, Kitching R, Yang YL, Sun P, Narod SA, Hanna WM, Seth AK (2005) A novel RING-type ubiquitin ligase breast cancer-associated gene 2 correlates with outcome in invasive breast cancer. Cancer Res 65:10401–10412

    Article  CAS  PubMed  Google Scholar 

  56. Amemiya Y, Azmi P, Seth A (2008) Autoubiquitination of BCA2 RING E3 ligase regulates its own stability and affects cell migration. Mol Cancer Res 6:1385–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Costello LC, Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Carvalho S, daSilva RB, Shawki A, Castro H, Lamy M, Eide D, Costa V, Mackenzie B, Tomás AM (2015) LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Mol Microbiol 96:581–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cui X, Zhang Y, Yang J, Sun X, Hagan JP, Guha S, Li M (2014) ZIP4 confers resistance to zinc deficiency-induced apoptosis in pancreatic cancer. Cell Cycle 13:1180–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Antala S, Ovchinnikov S, Kamisetty H, Baker D, Dempski RE (2015) Computation and functional studies provide a model for the structure of the zinc transporter hZIP4. J Biol Chem 290:17796–17805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kavitha PG, Kuruvilla S, Mathew MK (2015) Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol Biochem 97:165–174

    Article  CAS  Google Scholar 

  62. Yang X, Huang J, Jiang Y, Zhang H (2009) Cloning and functional identification of two members of the ZIP (Zrt Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36:281–287

    Article  CAS  PubMed  Google Scholar 

  63. Miyai T, Hojyoc S, Ikawa T, Kawamura M, Irié T, Ogura H, Hijikata A, Bin B, Yasuda T, Kitamura H, Nakayama M, Ohara O, Yoshida H, Koseki H, Mishima K, Fukada T (2014) Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc Natl Acad Sci USA 111:11780–11785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jung WH (2015) The zinc transport system and their regulation in pathogenic fungi. Mycobiology 43:179–183

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li S, Zhou X, Li H, Liu Y, Zhu L, Guo J, Liu X, Fan Y, Chen J, Chen R (2015) Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis. PLoS One 10:e0136647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Formigari A, Irato P, Santon A (2007) Zinc, antioxidant system and metallothionein in metal mediated-apoptosis. Compar Biochem Physiol (C) 146:443–459

    Google Scholar 

  67. Smidt K, Rungby J (2012) ZnT3: a zinc transporter active in several organs. Biometals 25:1–8

    Article  CAS  PubMed  Google Scholar 

  68. Suphioglu C, Kumar L, Sadli N, Freestone D, Michalczyk A, Sinclair A, Ackland ML (2010) The omega-3 fatty acid, DHA, decreases neuronal cell death in association with altered zinc transport. FEBS Lett 584:612–618

    Article  CAS  PubMed  Google Scholar 

  69. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    Article  CAS  PubMed  Google Scholar 

  70. Salazar G, Falcon-Perez JM, Harrison R, Faundez V (2009) SLC30A3 (ZnT3) oligomerization by dityrosine bonds regulates its subcellular localization and metal transport capacity. PLoS One 4:e5896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, Huang X, Moir RD, Wang D, Sayre LM, Smith MA, Chen SG, Bush AI (2004) Copper mediates of dityrosine cross-linking Alzheimer’s amyloid-beta. Biochemistry 43:560–568

    Article  CAS  PubMed  Google Scholar 

  72. Kaneko M, Noguchi T, Ikegami S, Sakurai T, Kakita A, Toyoshima Y, Kambe T, Yamada M, Inden M, Hara H, Oyanagi K, Inuzuka T, Takahashi H, Hozumi I (2015) Zinc transporters ZnT3 and ZnT6 are downregulated in the spinal cords of patients with sporadic amyotrophic lateral sclerosis. J Neurosci Res 93:370–379

    Article  CAS  PubMed  Google Scholar 

  73. Borek D, Kozak M, Pei J, Jaskolski M (2014) Crystal structure of active site mutant of antileukemic l-asparaginase reveals conserved zinc-binding site. FEBS J 281:4097–4111

    Article  CAS  PubMed  Google Scholar 

  74. Avramis VI (2012) Asparaginases: biochemical pharmacology and modes of drug resistance. Anticancer Res 32:2423–2437

    CAS  PubMed  Google Scholar 

  75. Aung HP, Bocola M, Schleper S, Rohm KH (2000) Dynamics of a mobile loop at the active site of Escherichia coli asparaginase. Biochim Biophys Acta 1481:349–359

    Article  CAS  PubMed  Google Scholar 

  76. Uz B, Tatonyan SC, Sayitoglu M, Erbilgin Y, Ng OH, Buyukasik Y, Sayinalp N, Aksu S, Goker H, Ozcebe OI, Ozbek U, Haznedaroglu IC (2013) Local hematopoetic rennin-angiotensin system in myeloid versus lymphoid hematological neoplastic disorders. J Renin Angiotensin Aldosterone Syst 14:308–314

    Article  PubMed  CAS  Google Scholar 

  77. Auge F, Hornebeck W, Decarme M, Laronze J-Y (2003) Improved gelatinase a selectivity by novel zinc binding groups containing galardin derivatives. Bioorg Med Chem Lett 13:1783–1786

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y, Fan X, Yang S, Scannevin R, Burke SL, Rhodes KJ, Jackson PF (2008) Syntheses and in vitro evaluation of arylsulfone-based MMP inhibitors with heterocycle-derived zinc-binding groups (ZBGs). Bioorg Med Chem Lett 18:405–408

    Article  CAS  PubMed  Google Scholar 

  79. Puerta DT, Lewis JA, Cohen SM (2004) New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups. J Am Chem Soc 126:8388–8389

    Article  CAS  PubMed  Google Scholar 

  80. Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M (2012) TPEN induces apoptosis independently of zinc chelator activity in a model of acute lymphoblastic leukemia and ex vivo acute leukemia cells through oxidative stress and mitochondria. Oxidat Med Cell Longev ID 313275:14

    Google Scholar 

  81. Sun X, Man N, Tan Y, Nimer SD, Wang L (2015) The role of histone acetyltransferases in normal and malignant hematopoiesis. Front Oncol 5:108

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yang X (2015) MOZ and MORF acetyltransferases: molecular interaction, animal development and human disease. Biochim Biophys Acta 1853:1818–1826

    Article  CAS  PubMed  Google Scholar 

  83. Sheikh BN, Lee SC, El-Saafin F, Vanyai HK, Hu Y, Pang SH, Grabow S, Strasser A, Nutt SL, Alexander WS, Smyth GK, Voss AK, Thomas T (2015) MOZ regulates B-cell progenitors and consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood 125:1910–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kindle KB, Troke PJF, Collins HM, Matsuda S, Bossi D, Bellodi C, Kalkhoven E, Salomoni P, Pelicci PG, Minucci S, Heery DM (2005) MOZ-TIF2 inhibits transcription by nuclear receptors and p53 by impairment of CBP function. Mol Cell Biol 25:988–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shima H, Yamagata K, Aikawa Y, Shino M, Koseki H, Shimada H, Kitabayashi I (2014) Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ–TIF2 fusion. Int J Hematol 99:21–31

    Article  CAS  PubMed  Google Scholar 

  86. Musselman CA, Kutateladze TG (2011) Handpicking epigenetic marks with PHD fingers. Nucleic Acids Res 39:9061–9071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell 53:49–62

    Article  CAS  PubMed  Google Scholar 

  88. Chen S, Yang Z, Wilkinson AW, Deshpande AJ, Sidoli S, Krajewski K, Strah BD, Garcia BA, Armstrong SA, Patel DJ, Gozani O (2015) The PZP domain of AF10 senses unmodified H3K27 to regulate DOT1L-mediated methylation of H3K79. Mol Cell 60:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang S, Laouar A, Denzin LK, Sant’Angelo DB (2015) Zbtb16 (PLZF) is stably suppressed and not inducible in non-innate T cells via T cell receptor-mediated signaling. Sci Rep 5:12113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. O’Hagan KL, Zhao J, Pryshchep O, Wang C, Phee H (2015) Pak2 controls acquisition of NKT cell fate by regulating expression of the transcription factors PLZF and Egr2. J Immunol 195:5272–5284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jeon YK, Go H, Nam SJ, Keam B, Kim TM, Jung KC, Kang HJ, Lee DS, Huh JR, Park SH (2012) Expression of the promyelocytic leukemia zinc-finger in T-lymphoblastic lymphoma and leukemia has strong implications for their cellular origin and greater association with initial bone marrow involvement. Mod Pathol 25:1236–1245

    Article  CAS  PubMed  Google Scholar 

  92. Constantinides MG, Gudjonson H, McDonald BD, Ishizuka IE, Verhoef PA, Dinnera AR, Bendelac A (2015) PLZF expression maps the early stages of ILC1 lineage development. Proc Natl Acad Sci USA 112:5123–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Verhoef PA, Constantinides MG, McDonald BD, Urban JF, Sperling AI, Bendelac A (2016) Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)–deficient mice. J Allergy Clin Immunol 137:591–600

    Article  CAS  PubMed  Google Scholar 

  94. Sadler AJ, Rossello FJ, Yu L, Deane JA, Yuan X, Wang D, Irving AT, Kaparakis-Liaskos M, Gantier MP, Ying H, Yim HCH, Hartlan EL, Notini AJ, deBoer S, White SJ, Mansell A, Liu J, Watkins DN, Gerondakis S, Williams BRG, Xu D (2015) BTB-ZF transcriptional regulator PLZF modifies chromatin to restrain inflammatory signaling programs. Proc Natl Acad Sci USA 112:1535–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  CAS  PubMed  Google Scholar 

  96. McConnell MJ, Durand L, Langley E, Coste-Sarget L, Zelent A, Chomienne C, Kouzarides T, Licht JD, Guidez F (2015) Post transcriptional control of the epigenetic stem cell regulator PLZF by sirtuin and HDAC deacetylases. Epigenet Chromatin 8:38

    Article  CAS  Google Scholar 

  97. Guidez F, Parks S, Wong H (2007) RARα-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc Natl Acad Sci USA 104:18694–18699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ablain J, Rice K, Soilihi H, deReynies A, Minucci S, deThé H (2014) Activation of a promyelocytic leukemia–tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat Med 20:167–174

    Article  CAS  PubMed  Google Scholar 

  99. Yang W, Shih H (2013) The deubiquitinating enzyme USP37 regulates the oncogenic fusion protein PLZF/RARA stability. Oncogene 32:5167–5175

    Article  CAS  PubMed  Google Scholar 

  100. Seshire A, Roßiger T, Frech M, Beez S, Hagemeyer H, Puccetti E (2012) Direct interaction of PU.1 with oncogenic transcription factors reduces its serine phosphorylation and promoter binding. Leukemia 26:1338–1347

    Article  CAS  PubMed  Google Scholar 

  101. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  CAS  PubMed  Google Scholar 

  102. Muthyala R, Shin WS, Xie J, Sham YY (2015) Discovery of 1-hydroxypyridine-2-thiones as selective histone deacetylase inhibitors and their potential application for treating leukemia. Bioorg Med Chem Lett 25:4320–4323

    Article  CAS  PubMed  Google Scholar 

  103. Li Y, Woster PM (2015) Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group. MedChemComm 6:613–618

    Article  CAS  PubMed  Google Scholar 

  104. Crispino JD (2005) GATA1 in normal and malignant hematopoiesis. Semin Cell Dev Biol 16:137–147

    Article  CAS  PubMed  Google Scholar 

  105. Katsumura KR, DeVilbiss AW, Pope NJ, Johnson KD, Bresnick EH (2013) Transcriptional mechanisms underlying hemoglobin synthesis. Cold Spring Harb Perspect Med 3:a015412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Li H, Hui H, Xu J, Yang H, Zhang X, Liu X, Zhou Y, Li Z, Guo Q, Lu N (2016) Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells. Arch Toxicol 90:1507–1522

    Article  CAS  PubMed  Google Scholar 

  107. Collin M, Dickinson R, Bigley V (2015) Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol 169:173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kazenwadel J, Betterman KL, Chong C, Stokes PH, Lee YK, Secker GA, Agalarov Y, Demir CS, Lawrence DM, Sutton DL, Tabruyn DP, Miura N, Salminen M, Petrova TV, Matthews JM, Hahn CN, Scott HS, Harvey NL (2015) GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Investig 125:2979–2994

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hsua AP, McReynoldsa LJ, Holland SM (2015) GATA2 deficiency. Curr Opin Allergy Clin Immunol 15:104–109

    Article  CAS  Google Scholar 

  110. Bates DL, Chen Y, Kim G, Guo L, Chen L (2008) Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol 381:1292–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Greif PA, Dufour A, Konstandin NP, Ksienzyk B, Zellmeier E, Tizazu B, Sturm J, Benthaus T, Herold T, Yaghmaie M, Dorge P, Hopfner K, Hauser A, Graf A, Krebs S, Blum H, Kakadia PM, Schneider S, Hoster E, Schneider F, Stanulla M, Braess J, Sauerland MC, Berdel WE, Buchner T, Woermann BJ, Hiddemann W, Spiekermann K, Bohlander SK (2012) GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define unique genetic entity of acute myeloid leukemia. Blood 120:395–403

    Article  CAS  PubMed  Google Scholar 

  112. Hou H, Lin Y, Kuo Y, Chou W, Lin C, Liu C, Chen C, Lin L, Tseng M, Huang C, Chiang Y, Liu M, Liu C, Tang J, Yao M, Huang S, Ko B, Hsu S, Wu S, Tsay W, Chen Y, Tien H (2015) GATA2 mutations in patients with acute myeloid leukemia-paired samples analyses show that the mutation is unstable during disease evolution. Ann Hematol 94:211–221

    Article  CAS  PubMed  Google Scholar 

  113. Capalbo G, Mueller-Kuller T, Koschmieder S, Klein HU, Ottomann OG, Hoelzer D, Scheuring UJ (2013) Characterization of ZC3H15 as a potential TRAF-2-interacting protein implicated in the NFκB pathway and overexpressed in AML. Int J Oncol 43:246–254

    Article  CAS  PubMed  Google Scholar 

  114. Chen M, Dong L, Zhang X, Yin X, Ning H, Shen C, Su R, Li F, Song L, Ma Y, Wang F, Zhao H, Yu J, Zhang J (2015) ZFP36L1 promotes monocyte/macrophage differentiation by repressing CDK6. Sci Rep 5:16229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rodriguez MS, Egan I, Lopitz-Otso F, Aillet F, Lopez-Mato MP, Dorronsoro A, Lobato-Gil S, Sutherland JD, Barrio R, Trigueros C, Lang V (2014) The RING ubiquitin E3 RNF114 interacts with A20 and modulates NF-κB activity and T-cell activation. Cell Death Dis 5:e1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tsunoda T, Shirasawa S (2013) Roles of ZFAT in hematopoiesis, angiogenesis and cancer development. Anticancer Res 33:2833–2837

    CAS  PubMed  Google Scholar 

  117. Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G (2012) Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci 69:2527–2541

    Article  CAS  PubMed  Google Scholar 

  118. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, Taghon T, Tremblay CS, Costa M, Ghahremani MF, De Medts J, Bartunkova S, Haigh K, Schwab C, Farla N, Pieters T, Matthijssens F, Van Roy N, Best JA, Deswarte K, Bogaert P, Carmichae C, Rickard A, Suryani S, Bracken LS, Alserihi R, Canteґ-Barrett K, Haenebalcke L, Clappier E, Rondou P, Slowicka K, Huylebroeck D, Goldrath AW, Janzen V, McCormack MP, Lock RB, Curtis DJ, Harrison C, Berx G, Speleman F, Meijerink JPP, Soulier Vlierberghe PV, Haigh JJ (2015) ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour initiating potential and IL-7 receptor signaling. Nat Commun 6:5794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Moroy T, Vassen L, Wilkes B, Khandanpour C (2015) From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood 126:2561–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu P, Reik A, Chu V, Paschon DE, Zhang L, Kuball J, Camisa B, Bondanza A, Casorati G, Ponzoni M, Ciceri F, Bordignon C, Greenberg PD, Holmes MC, Gregory PD, Naldini L, Bonini C (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18:807–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mirowska A, Sledzinski T, Smolenski RT, Swierczynski J (2014) Down-regulation of Zac1 gene expression in rat white adipose tissue by androgens. J Steroid Biochem Mol Biol 140:63–70

    Article  CAS  PubMed  Google Scholar 

  122. Kastner P, Dupuis A, Gaub MP, Herbrecht R, Lutz P, Chan S (2013) Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia. Am J Blood Res 3:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ferreirós-Vidal I, Carroll T, Taylor B (2013) Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. Blood 121:1769–1782

    Article  PubMed  CAS  Google Scholar 

  124. Wolf G, Yang P, Fuchtbauer AC, Fuchtbauer E, Silva AM, Park C, Wu W, Nielsen AL, Pedersen FS, Macfarlan TS (2015) The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev 29:538–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gorzkiewicz A, Walczewska A (2015) Functions of the Ikaros transcription factor and the role of IKZF1 gene defects in hematological malignancies. Acta Haematol Polonica 46:10–19

    Article  Google Scholar 

  126. Francis OL, Payne JL, Su R, Payne KJ (2011) Regulator of myeloid differentiation and function: the secret life of Ikaros. World J Biol Chem 2:119–125

    Article  PubMed  PubMed Central  Google Scholar 

  127. Iacobucci I, Iraci N, Messina M (2012) IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PLoS One 7:e40934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vshivkova OS, Meleshko AN (2015) The role of Ikaros transcriptional factor in normal hematopoiesis and leukemogenesis: biological and clinical aspects. Adv Mol Oncol (Russ.) 2:13–26. https://doi.org/10.17650/2313-805X.2.1.013-026

    Article  Google Scholar 

  129. Li Z, Perez-Casellas LA, Savic A, Song C, Dovat S (2011) Ikaros isoforms: the saga continues. World J Biol Chem 2:140–145

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lana T, de Lorenzo P, Bresolin S, Bronzini I, den Boer ML, Cave H, Fronkova E, Stanulla M, Zaliova M, Harrison CJ, de Groot H, Valsecchi MG, Biondi A, Basso G, Cazzaniga G, de Kronnie G (2015) Refinement of IKZF1 status in pediatric philadelphia positive acute lymphoblastic leukemia. Leukemia 29:2107–2110

    Article  CAS  PubMed  Google Scholar 

  131. Martinelli G, Iacobucci I, Papayannidis C, Soverini S (2009) New targets for Ph+ leukaemia therapy. Best Pract Res Clin Haematol 22:445–454

    Article  CAS  PubMed  Google Scholar 

  132. Iacobucci I, Lonetti A, Messa F (2008) Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood 112:3847–3855

    Article  CAS  PubMed  Google Scholar 

  133. Kastner P, Chan S (2011) Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem 2:108–114

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wolf D, Goff SP (2009) Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458:1201–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ichida Y, Utsunomiya Y, Onodera M (2016) The third to fifth zinc fingers play an essential role in the binding of ZFP809 to the MLV-derived PBS. Biochem Biophys Res Commun 469:490–494

    Article  CAS  PubMed  Google Scholar 

  136. Ichida Y, Utsunomiya Y, Yasuda T, Nakabayashi K, Sato T, Onodera M (2015) Functional domains of ZFP809 essential for nuclear localization and gene silencing. PLoS One 10:e0139274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Spell SR, Farrell NP (2015) [Au(dien)(N-heterocycle)]3+: reactivity with biomolecules and zinc finger peptides. Inorg Chem 54:79–86

    Article  CAS  PubMed  Google Scholar 

  138. Orlov AP, Trofimova TP, Osipova EYu, Proshin AN, Orlova MA (2017) Zinc-containing derivatives of 2-aminopyrimidine. Russ Chem Bull 66:1860–1866

    Article  CAS  Google Scholar 

  139. Tailler M, Senovilla L, Lainey E, Theґpot S, Metivier D, Seґbert M, Baud V, Billot K, Fenaux P, Galluzzi L, Boehrer S, Kroemer G, Kepp O (2012) Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia. Oncogene 31:3536

    Article  CAS  PubMed  Google Scholar 

  140. Lin Q, Barbas CF, Schultz PG (2003) Small-molecule switches for zinc finger transcription factors. J Am Chem Soc 125:612–613

    Article  CAS  PubMed  Google Scholar 

  141. Lu L, Chen XM, Tao HM, Xiong W, Jie SH, Li HY (2015) Regulation of the expression of zinc finger protein genes by microRNAs enriched within acute lymphoblastic leukemia-derived microvesicles. Gen Mol Res 14:11884–11895

    Article  CAS  Google Scholar 

  142. Gomez-Benito M, Conchillo A, García MA, Vázquez I, Maicas M, Vicente C, Cristobal I, Marcotegui N, García-Ortí L, Bandrés E, Calasanz MJ, Alonso MM, Odero MD (2010) EVI1 controls proliferation in acute myeloid leukaemia through modulation of miR-1-2. Br J Cancer 103:1292–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamamoto H, Lu J, Oba S, Kawamata T, Yoshimi A, Kurosaki N, Yokoyama K, Matsushita H, Kurokawa M, Tojo A, Ando K, Morishita K, Katagiri K, Kotani A (2016) miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target. Sci Rep 6:19204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vázquez I, Maicas M, Cervera J, Agirre X, Marin-Béjar O, Marcotegu N, Vicente C, Lahortiga I, Gomez-Benito M, Carranza C, Valencia A, Brunet S, Lumbreras E, Prosper F, Gómez-Casares MT, Hernández-Rivas JM, Calasanz MJ, Sanz MA, Sierra J, Odero MD (2011) Down-regulation of EVI1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica 96:1448–1456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Heller G, Rommer A, Steinleitner K, Etzler J, Hackl H, Heffeter P, Tomasich E, Filipits M, Steinmetz B, Topakian T, Klingenbrunner S, Ziegler B, Spittler A, Zöchbauer-Müller S, Berger W, Wieser R (2015) EVI1 promotes tumor growth via transcriptional repression of MS4A3. J Hematol Oncol 21:28

    Article  CAS  Google Scholar 

  146. Steinmetz B, Hackl H, Slabáková E, Schwarzinger I, Smějová M, Spittler A, Arbesu I, Shehata M, Souček K, Wieser R (2014) The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid. Cell Cycle 13:2931–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, Nitta E, Arai S, Sato T, Shimabe M, Nakagawa M, Imai Y, Kitamura T, Kurokawa M (2011) Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 117:3617–3628

    Article  CAS  PubMed  Google Scholar 

  148. Yamasaki K, Chuang VT, Maruyama T, Otagiri M (2013) Albumin–drug interaction and its clinical implication. Biochim Biophys Acta 1830:5435–5443

    Article  CAS  PubMed  Google Scholar 

  149. Enyedy EA, Horvath L, Hetenyi A, Tuccinardi T, Hartinger CG, Keppler BK, Kiss T (2011) Interactions of the carrier ligands of antidiabetic metal complexes with human serum albumin: a combined spectroscopic and separation approach with molecular modeling studies. Bioorg Med Chem 19:4202–4210

    Article  CAS  PubMed  Google Scholar 

  150. Wun F, Zhang L, Ji Z, Wan X (2010) Spectroscopic investigation of the interaction between thiourea-zinc complex and serum albumin. J Luminescence 130:1280–1284

    Article  CAS  Google Scholar 

  151. Anand U, Mukherjee S (2013) Binding, unfolding and refolding dynamics of serum albumins. Biochim Biophys Acta 1830:5394–5404

    Article  CAS  PubMed  Google Scholar 

  152. Buchachenko AL, Chekhonin VP, Orlov AP, Kuznetsov DA (2010) Zinc-related magnetic isotope effect in enzymatic ATP synthesis: a medicinal potential of the nuclear spin selectivity phenomena. Int J Mol Med Adv Sci 6:34–37

    CAS  Google Scholar 

  153. Orlova MA, Osipova EYu, Roumiantsev SA, Ashurko SP (2012) Effect of the 67Zn isotope on leukemic cells and normal lymphocytes. Russ Chem Bull 61:405–409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey P. Orlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, A.P., Orlova, M.A., Trofimova, T.P. et al. The role of zinc and its compounds in leukemia. J Biol Inorg Chem 23, 347–362 (2018). https://doi.org/10.1007/s00775-018-1545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1545-9

Keywords

Navigation