Skip to main content

Advertisement

Log in

Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ–TIF2 fusion

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Chromosomal translocations that involve the monocytic leukemia zinc finger (MOZ) gene are typically associated with human acute myeloid leukemia (AML) and often predict a poor prognosis. Overexpression of HOXA9, HOXA10, and MEIS1 was observed in AML patients with MOZ fusions. To assess the functional role of HOX upregulation in leukemogenesis by MOZ–TIF2, we focused on bromodomain-PHD finger protein 1 (BRPF1), a component of the MOZ complex that carries out histone acetylation for generating and maintaining proper epigenetic programs in hematopoietic cells. Immunoprecipitation analysis showed that MOZ–TIF2 forms a stable complex with BRPF1, and chromatin immunoprecipitation analysis showed that MOZ–TIF2 and BRPF1 interact with HOX genes in MOZ–TIF2-induced AML cells. Depletion of BRPF1 decreased the MOZ localization on HOX genes, resulting in loss of transformation ability induced by MOZ–TIF2. Furthermore, mutant MOZ–TIF2 engineered to lack histone acetyltransferase activity was incapable of deregulating HOX genes as well as initiating leukemia. These data indicate that MOZ–TIF2/BRPF1 complex upregulates HOX genes mediated by MOZ-dependent histone acetylation, leading to the development of leukemia. We suggest that activation of BRPF1/HOX pathway through MOZ HAT activity is critical for MOZ–TIF2 to induce AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitabayashi I, Aikawa Y, Nguyen LA, et al. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ–CBP fusion protein. EMBO J. 2001;20(24):7184–96.

    Article  CAS  PubMed  Google Scholar 

  2. Aikawa Y, Katsumoto T, Zhang P, et al. PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ–TIF2. Nat Med. 2010;16(5):580–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rokudai S, Aikawa Y, Tagata Y, et al. Monocytic leukemia zinc finger (MOZ) interacts with p53 to induce p21 expression and cell-cycle arrest. J Biol Chem. 2009;284(1):237–44.

    Article  CAS  PubMed  Google Scholar 

  4. Katsumoto T, Aikawa Y, Iwama A, et al. MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev. 2006;20(10):1321–30.

    Article  CAS  PubMed  Google Scholar 

  5. Borrow J, Stanton VP Jr, Andresen JM, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996;14:33–41.

    Article  CAS  PubMed  Google Scholar 

  6. Kitabayashi I, Aikawa Y, Yokoyama A, et al. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia. 2001;15:89–94.

    Article  CAS  PubMed  Google Scholar 

  7. Chaffanet M, Gressin L, Preudhomme C, et al. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer. 2000;28:138–44.

    Article  CAS  PubMed  Google Scholar 

  8. Deguchi K, Ayton PM, Carapeti M, et al. MOZ–TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell. 2003;3:259–71.

    Article  CAS  PubMed  Google Scholar 

  9. Yang XJ, Ullah M. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene. 2007;26:5408–19.

    Article  CAS  PubMed  Google Scholar 

  10. Carapeti M, Aguiar RC, Goldman JM, et al. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998;91:3127–33.

    CAS  PubMed  Google Scholar 

  11. Calvo KR, Sykes DB, Pasillas M, Kamps MP. Hoxa9 immortalizes a granulocyte macrophage colony stimulating factor dependent promyelocyte capable of biphenotypic differentiation to neutrophils or macrophages independent of enforced Meis expression. Mol Cell Biol. 2000;20:3274–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Buske C, Feuring-Buske M, Antonchuk J, et al. Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood. 2001;97:2286–92.

    Article  CAS  PubMed  Google Scholar 

  13. Thorsteinsdottir U, Mamo A, Kroon E, et al. Overexpression of the myeloid leukemia associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood. 2002;99:121–9.

    Article  CAS  PubMed  Google Scholar 

  14. Thorsteinsdottir U, Sauvageau G, Hough MR, et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol. 1997;17:495–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Camós M, Esteve J, Jares P, et al. Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res. 2006;66(14):6947–54.

    Article  PubMed  Google Scholar 

  16. Hibiya K, Katsumoto T, Kondo T, et al. Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons. Dev Biol. 2009;329(2):176–90.

    Article  CAS  PubMed  Google Scholar 

  17. Laue K, Daujat S, Crump JG, et al. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development. 2008;135:1935–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ullah M, Pelletier N, Xiao L, et al. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol. 2008;28(22):6828–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell. 2000;102(4):463–73.

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Campo FM, Borrow J, Kouskoff V, Lacaud G. The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood. 2009;113(20):4866–74.

    Article  CAS  PubMed  Google Scholar 

  21. Thorsteinsdottir U, Kroon E, Jerome L, et al. Defining roles of Hox and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol. 2001;21(1):224–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kroon E, Krosl J, Thorsteinsdottir U, et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 1998;17(13):3714–25.

    Article  CAS  PubMed  Google Scholar 

  23. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–7.

    Article  CAS  PubMed  Google Scholar 

  24. Andreeff M, Ruvolo V, Gadgil S, et al. HOX expression patterns identify a common signature for favorable AML. Leukemia. 2008;22(11):2041–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vezzoli A, Bonadies N, Allen MD, et al. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol. 2010;17(5):617–9.

    Article  CAS  PubMed  Google Scholar 

  26. Naoe T, Kiyoi H. Gene mutations of acute myeloid leukemia in the genome era. Int J Hematol. 2013;97(2):165–74.

    Article  CAS  PubMed  Google Scholar 

  27. Shima Y, Kitabayashi I. Deregulated transcription factors in leukemia. Int J Hematol. 2011;94(2):134–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid from the Ministry of Health, Labor, and Welfare; the Ministry of Education, Culture, Sports, Science, and Technology; and National Cancer Center Research and Development Fund.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issay Kitabayashi.

About this article

Cite this article

Shima, H., Yamagata, K., Aikawa, Y. et al. Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ–TIF2 fusion. Int J Hematol 99, 21–31 (2014). https://doi.org/10.1007/s12185-013-1466-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-013-1466-x

Keywords

Navigation