Skip to main content
Log in

Binding and interaction of di- and tri-substituted organometallic triptycene palladium complexes with DNA

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two triptycene-based ligands with pendant bromophenyl units have been prepared. These triptycene derivatives have been used as synthons for the synthesis of di and tri nuclear palladium complexes. The organic molecules and their corresponding organometallic complexes have been fully characterized using nuclear magnetic resonance (NMR), infrared (IR) spectroscopy and mass spectrometry. The mode of binding and effect of the complexes on pUC19 plasmid, calf thymus DNA and oligomer duplex DNA have been investigated by a host of analytical methods. The complexes brought about unwinding of supercoiled plasmid and the unwinding angle was found to be related to the binding affinity of the complexes with DNA, where both these parameters were guided by the structure of the complexes. Concentration-dependent inhibition of endonuclease activity of SspI and BamHI by the complexes indicates preference for G/C sequence for binding to DNA. However, neither the complexes did not introduce any cleavage at abasic site in oligomer duplex DNA, nor they created linear form of the plasmid upon co-incubation with the DNA samples. The interactions of the complexes with DNA were found to be strongly guided by the structure of the complexes, where intercalation as well as groove binding was observed, without inflicting any damage to the DNA. The mode of interaction of the complexes with DNA was further confirmed by isothermal calorimetry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bartlett PD, Ryan MJ, Cohen SG (1942) J Am Chem Soc 64:2649–2653

    Article  CAS  Google Scholar 

  2. Jiang Y, Chen CF (2011) Eur J Org Chem 32:6377–6403

    Article  Google Scholar 

  3. Chen CF (2011) Chem Commun 47:1674–1688

    Article  CAS  Google Scholar 

  4. Zhao LW, Li Z, Wirth T (2010) Chem Lett 39:658–667

    Article  CAS  Google Scholar 

  5. Chong JH, MacLachlan MJ (2009) Chem Soc Rev 38:3301–3315

    Article  PubMed  CAS  Google Scholar 

  6. Swager TM (2008) Acc Chem Res 41:1181–1189

    Article  PubMed  CAS  Google Scholar 

  7. Hoogboom J, Swager TM (2006) J Am Chem Soc 128:15058–15059

    Article  PubMed  CAS  Google Scholar 

  8. Perchellet EM, Magill MJ, Huang X, Brantis CE, Hua DH, Perchellet JP (1999) Anti Cancer Drugs 10:749–766

    Article  PubMed  CAS  Google Scholar 

  9. Wang B, Perchellet EM, Wang Y, Tamura M, Hua DH, Perchellet JP (2003) Anticancer Drugs 14:503–514

    Article  PubMed  CAS  Google Scholar 

  10. Perchellet EM, Wang Y, Lou K, Zhao H, Battina SK, Hua DUYH et al (2007) Anticancer Res 27:3259–3272

    PubMed  CAS  Google Scholar 

  11. Perchellet EM, Sperfslage BJ, Wang Y, Huang X, Tamura M, Hua DH, Perchellet JP (2002) Anticancer Drugs 13:567–582

    Article  PubMed  CAS  Google Scholar 

  12. Perchellet EM, Wang Y, Webe RL, Lou K, Hua DH, Perchellet JP (2004) Anticancer Drugs 15:929–946

    Article  PubMed  CAS  Google Scholar 

  13. Wang Y, Perchellet EM, Tamura M et al (2002) Cancer Lett 188:73–83

    Article  PubMed  CAS  Google Scholar 

  14. Chaires JB (1998) Curr Opin Struct Biol 8:314–320

    Article  PubMed  CAS  Google Scholar 

  15. Tse WC, Boger DL (2004) Chem Biol 11:1607–1617

    Article  PubMed  CAS  Google Scholar 

  16. Lipscomb LA, Zhou FX, Presnell SR, Woo RJ, Pee ME, Plaskon RR, Williams LD (1996) Biochemistry 35:2818–2823

    Article  PubMed  CAS  Google Scholar 

  17. Krishnan P, Bastow KF (2000) Anti cancer Drug Des 15:255–264

    CAS  Google Scholar 

  18. Weder E, Hambley TW, Kennedy BJ, Lay PA, Foran GJ, Rich AM (2001) Inorg Chem 40:1295–1302

    Article  PubMed  CAS  Google Scholar 

  19. Zhou Q, Hambley TW, Kennedy BJ, Lay PA, Turner P, Warwick B, Biffin JR, Regtop HL (2000) Inorg Chem 39:3742–3748

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez-Pantoja JF, Stern M, Jarzecki AA, Royo E et al (2011) Inorg Chem 50:11099–11110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Carreira M, Sanjuán RC, Sanaú M, Zhao X, Magliozzo RS, Marzo I, Contel M (2012) J Inorg Biochem 116:204–214

    Article  PubMed  CAS  Google Scholar 

  22. Gao E, Zhu MC, Yin H, Liu L, Wu Q, Sun Y (2008) J Inorg Biochem 102:1958–1964

    Article  PubMed  CAS  Google Scholar 

  23. Mishra A, Kumar SR, Hong SH, Kim H, Vajpayee V, Lee HW, Ahn BC, Wang M, Stang PJ, Chi KW (2011) Organometallics 30:6343–6346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Peruzzini M, Gonsalvi L, Romerosa A (2005) Chem Soc Rev 34:1038–1047

    Article  PubMed  CAS  Google Scholar 

  25. Cook TR, Vajpayee V, Lee MH, Stang PJ, Chi K (2013) Acc Chem Res 46:2464–2474

    Article  PubMed  CAS  Google Scholar 

  26. Gao E, Zhu M, Liu L, Huang Y, Wang L, Shi S, Chuyue Z, Sun WY (2010) Inorg Chem 49:3261–3270

    Article  PubMed  CAS  Google Scholar 

  27. Gao E, Liu C, Zhu M, Lin H, Wu Q, Liu L (2009) Anticancer Agents Med Chem 9:356–368

    Article  PubMed  CAS  Google Scholar 

  28. Messere A, Fabbri E, Borgatti M, Gambari R, Blasio BD, Pedone C, Romanelli A (2007) J Inorg Biochem 101:254–260

    Article  PubMed  CAS  Google Scholar 

  29. García-Friaza G, Fernández-Botello A, Pérez JM, Prieto MJ, Moreno V (2006) J Inorg Biochem 100:1368–1377

    Article  PubMed  Google Scholar 

  30. Paul AK, Torshizi HM, Srivastava TS, Chavan SJ, Chitnis MP (1993) J Inorg Biochem 50:9–20

    Article  PubMed  CAS  Google Scholar 

  31. Soledad Betanzos-Lara S, Novakova O, Deeth RJ, Pizarro AM, Clarkson GJ, Liskova B, Brabec V, Sadler PJ, Habtemariam A (2012) J Biol Inorg Chem 17:1033–1051

    Article  PubMed  Google Scholar 

  32. Malina J, Hannon MJ, Brabec V (2008) Nucleic Acids Res 36:3630–3638

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Lee M, Rhodes AL, Wyatt MD, Forrow S, Hartley JA (1993) Biochemistry 15:4339–4345

    Google Scholar 

  34. Wyatt MD, Garbiras BJ, Haskel MK, Lee M, Souhami RL, Hartley JA (1994) Anti-Cancer Drug Des 1:511–529

    Google Scholar 

  35. McKnight RE, Reisenauer E, Pintado MV, Shivani R, Dixon DW (2011) Bioorg. Med. Chem. Lett. 21:4288–4291

    Article  PubMed  CAS  Google Scholar 

  36. Manna J, Kuehl CJ, Whiteford JA, Stang PJ (1997) Organometallics 16:1897–1905

    Article  CAS  Google Scholar 

  37. Jaramillo D, Wheate NJ, Ralph SF, Howard WA, Tor Y, Wright JRA (2006) Inorg Chem 45:6004–6012

    Article  PubMed  CAS  Google Scholar 

  38. Zhang AG, Zhang YZ, Duan ZM, Wang KZ, Wei HB, Bian ZQ, Huang CH (2011) Inorg Chem 50:6425–6461

    Article  PubMed  CAS  Google Scholar 

  39. Byrne CD, deMello AJ (1998) Biophys Chem 70:173–184

    Article  PubMed  CAS  Google Scholar 

  40. Liu ZC, Wang BD, Yang ZY, Li Y, Qin DD, Li TR (2009) Eur J Med Chem 44:4477–4484

    Article  PubMed  CAS  Google Scholar 

  41. Coban B, Yildiz U, Sengul A (2013) J Biol Inorg Chem 18:461–471

    Article  PubMed  CAS  Google Scholar 

  42. Nastasi M, Morris JM, Rayner DM, Seligy VI, Szabo AG, Williams DF, Williams RE, Yip RW (1976) J Am Chem Soc 98:3979–3986

    Article  PubMed  CAS  Google Scholar 

  43. Kyros L, Banti CN, Kourkoumelis N, Kubicki M, Sainis I, Hadjikakou SK (2014) J Biol Inorg Chem. doi:10.1007/s00775-014-1089-6

    PubMed  Google Scholar 

  44. Nair RB, Teng ES, Kirkland SL, Murphy C (1998) Inorg Chem 37:139–141

    Article  PubMed  CAS  Google Scholar 

  45. Thomas M, Varshney U, Bhattacharya S (2002) Eur J Org Chem 2002:3604–3615

    Article  Google Scholar 

  46. Rajendran A, Nair BU (2006) Biochim Biophys Acta 1760:1794–1801

    Article  PubMed  CAS  Google Scholar 

  47. Clarke MJ, Jansen B, Marx KA, Kruger R (1986) Inorg Chim Acta 124:13–28

    Article  CAS  Google Scholar 

  48. Maheswari PU, Palaniandavar M (2004) J Inorg Biochem 98:219–230

    Article  Google Scholar 

  49. Wilson WD, Tanious FA, Barton HJ, Jones RL, Fox K, Wydra RL, Strekowski L (1990) Biochemistry 29:8452

    Article  PubMed  CAS  Google Scholar 

  50. Bailly C, Colson P, Henichart JP, Houssier C (1993) Nucleic Acids Res 21:3705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Chaires JB (1997) Biopolymers 44:201

    Article  PubMed  CAS  Google Scholar 

  52. Wilson WD (1999) DNA intercalators. In: Kool ET (ed) DNA and aspects of molecular biology. Elsevier, New York, pp 427–476

    Google Scholar 

  53. Utsuno K, Maeda Y, Tsubo M (1999) Chem Pharm Bull 47:1363–1368

    Article  PubMed  CAS  Google Scholar 

  54. Puvvada MS, Hartley JA, Jenkins TC, Thurston DE (1993) Nucleic Acids Res 21:3671–3675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Gonzalez VM, Aknso PC (1997) J Inorg Biochem 68:283–287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant to P. D. and N. D from Department of Biotechnology (DBT), Govt. of India, Project No. BT/PR3444/NNT/28/560/2011. R. K. and S. B. are thankful to IIT Patna for fellowship. Authors are thankful to Prof. P. K. Das of IACS, Kolkata for help with CD facility. All the authors gratefully acknowledge the availability of Infrastructural and experimental facilities provided by IIT Patna. The authors also acknowledge SID, IISc Bangalore and SAIF, Punjab University for analytical facilities.

Author contribution statement

All authors have contributed to the idea, the designing and planning of the studies as well as interpretation and discussion of the results. S.B. synthesized the triptycene based organic ligands and their corresponding organometallic complexes. R.K. carried out the experiments related to evaluation of biological activity of triptycene based molecules reported herein. All authors have contributed to compiling the manuscript and have approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neeladri Das or Prolay Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Bhowmick, S., Das, N. et al. Binding and interaction of di- and tri-substituted organometallic triptycene palladium complexes with DNA. J Biol Inorg Chem 19, 1221–1232 (2014). https://doi.org/10.1007/s00775-014-1180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1180-z

Keywords

Navigation