Skip to main content
Log in

His-containing plant metallothioneins: comparative study of divalent metal-ion binding by plant MT3 and MT4 isoforms

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Metallothioneins (MTs) are a superfamily of Cys-rich, low-molecular weight metalloproteins that bind heavy metal ions. These cytosolic metallopeptides, which exist in most living organisms, are thought to be involved in metal homeostasis, metal detoxification, and oxidative stress protection. In this work, we characterise the Zn(II)- and Cd(II)-binding abilities of plant type 3 and type 4 MTs identified in soybean and sunflower, both of them being His-containing peptides. The recombinant metal-MT complexes synthesised in Zn(II) or Cd(II)-enriched Escherichia coli cultures have been analysed by ESI-MS, and CD, ICP-AES, and UV spectroscopies. His-to-Ala type 3 MT mutants have also been constructed and synthesised for the study of the role of His in divalent metal ion coordination. The results show comparable divalent metal-binding capacities for the MTs of type 3, and suggest, for the first time, the participation of their conserved C-term His residues in metal binding. Interesting features for the Zn(II)-binding abilities of type 4 MTs are also reported, as their variable His content may be considered crucial for their biological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Capdevila M, Atrian S (2011) J Biol Inorg Chem 16:977–989

    Article  PubMed  CAS  Google Scholar 

  2. Capdevila M, Bofill R, Palacios O, Atrian S (2012) Coord Chem Rev 256:46–62

    Article  CAS  Google Scholar 

  3. http://www.bioc.unizh.ch/mtpage/classif.html. Accessed 5th June 2013

  4. Cobbett C, Goldsbrough P (2002) Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  5. Leszczyszyn OI, Imam HT, Blindauer CA (2013) Metallomics 5:1146–1169

    Article  PubMed  CAS  Google Scholar 

  6. Freisinger E (2011) J Biol Inorg Chem 16:1035–1045

    Article  PubMed  CAS  Google Scholar 

  7. Calderone V, Dolderer B, Hartmann HJ, Echner H, Luchinat C, Del Bianco C, Mangani S, Weser U (2005) Proc Natl Acad Sci USA 102:51–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Peroza EA, Schmucki R, Güntert P, Freisinger E, Zerbe O (2009) J Mol Biol 387:207–218

    Article  PubMed  CAS  Google Scholar 

  9. Blindauer CA, Harrison MD, Parkinson JA, Robinson AK, Cavet JS, Robinson NJ, Sadler PJ (2001) Proc Natl Acad Sci USA 98:9593–9598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Freisinger E (2007) Inorg Chim Acta 360:369–380

    Article  CAS  Google Scholar 

  11. Abdullah SNA, Cheah SC, Murphy DJ (2002) Plant Physiol Biochem 40:255–263

    Article  CAS  Google Scholar 

  12. Rubio Fernandez L, Vandenbussche G, Roosens N, Govaerts C, Goormaghtigh E, Verbruggen N (2012) Biochim Biophys Acta 1824:1016–1023

    Article  Google Scholar 

  13. Hegelund JN, Schiller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK (2012) Plant Physiol 159:1125–1137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Hanley-Bowdoin L, Lane BG (1983) Eur J Biochem 135:9–15

    Article  PubMed  CAS  Google Scholar 

  15. Peroza EA, Freisinger E (2007) J Biol Inorg Chem 12:377–391

    Article  PubMed  CAS  Google Scholar 

  16. Leszczyszyn OI, Schmid R, Blindauer CA (2007) Proteins Struct Funct Bioinf 68:922–935

    Article  CAS  Google Scholar 

  17. Loebus J, Peroza EA, Blüthgen N, Fox T, Meyer-Klaucke W, Zerbe O, Freisinger E (2011) J Biol Inorg Chem 16(5):683–694

    Article  PubMed  CAS  Google Scholar 

  18. Blindauer CA (2013) J Inorg Biochem 121:145–155

    Article  PubMed  CAS  Google Scholar 

  19. Leszczyszyn OI, White CR, Blindauer CA (2010) Mol Biosyst 6:1592–1603

    Article  PubMed  CAS  Google Scholar 

  20. Pagani MA, Tomas M, Carrillo J, Bofill R, Capdevila M, Atrian S, Andreo CS (2012) J Inorg Biochem 117:306–315

    Article  PubMed  CAS  Google Scholar 

  21. Chyan CL, Lee TT, Liu CP, Yang YC, Tzen JT, Chou WM (2005) Biosci Biotechnol Biochem 69:2319–2325

    Article  PubMed  CAS  Google Scholar 

  22. Capdevila M, Cols N, Romero-Isart N, Gonzàlez-Duarte R, Atrian S, Gonzàlez-Duarte P (1997) Cell Mol Life Sci 53:681–688

    Article  PubMed  CAS  Google Scholar 

  23. Domènech J, Mir G, Huguet G, Molinas M, Capdevila M, Atrian S (2006) Biochimie 88:583–593

    Article  PubMed  Google Scholar 

  24. Domènech J, Orihuela R, Mir G, Molinas M, Atrian S, Capdevila M (2007) J Biol Inorg Chem 12:867–882

    Article  PubMed  Google Scholar 

  25. Cols N, Romero-Isart N, Capdevila M, Oliva B, Gonzàlez-Duarte P, Gonzàlez-Duarte R, Atrian S (1997) J Inorg Biochem 68:157–166

    Article  PubMed  CAS  Google Scholar 

  26. Bongers J, Walton CD, Richardson DE, Bell JU (1988) Anal Chem 60:2683–2686

    Article  PubMed  CAS  Google Scholar 

  27. Capdevila M, Domènech J, Pagani A, Tío L, Villarreal L, Atrian S (2005) Angew Chem Int Ed Engl 44:4618–4622

    Article  PubMed  CAS  Google Scholar 

  28. Miles EW (1977) Methods Enzymol 47:431–442

    Article  PubMed  CAS  Google Scholar 

  29. Li C, Rosenberg RC (1993) J Inorg Biochem 51:727–735

    Article  PubMed  CAS  Google Scholar 

  30. Qin K, Yang Y, Mastrangelo P, Westaway D (2002) J Biol Chem 277:1981–1990

    Article  PubMed  CAS  Google Scholar 

  31. Binolfi A, Lamberto GR, Duran R, Quintanar L, Bertoncini CW, Souza JM, Cerveñansky C, Zweckstetter M, Griesinger C, Fernández CO (2008) J Am Chem Soc 130:11801–11812

    Article  PubMed  CAS  Google Scholar 

  32. Bofill R, Orihuela R, Romagosa M, Domènech J, Atrian S, Capdevila M (2009) FEBS J 276:7040–7056

    Article  PubMed  CAS  Google Scholar 

  33. Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  34. Roosens NH, Bernard C, Leplae R, Verbruggen N (2004) FEBS Lett 577:9–16

    Article  PubMed  CAS  Google Scholar 

  35. Nikolić DB, Samardzić JT, Bratić AM, Radin IP, Gavrilović SP, Rausch T, Maksimović VR (2010) J Agric Food Chem 58:3488–3494

    Article  PubMed  Google Scholar 

  36. Guo WJ, Meetam M, Goldsbrough PB (2008) Plant Physiol 146:1697–1706

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Blindauer CA (2008) J Inorg Biochem 102:507–521

    Article  PubMed  CAS  Google Scholar 

  38. Pearson RG (1963) J Am Chem Soc 85:3533–3543

    Article  CAS  Google Scholar 

  39. Krizek BA, Merkle DL, Berg JM (1993) Inorg Chem 32:937–940

    Article  CAS  Google Scholar 

  40. Muntz K, Belozersky MA, Dunaevsky YE, Schlereth A, Tiedemann J (2001) J Exp Bot 52:1741–1752

    Article  PubMed  CAS  Google Scholar 

  41. Peroza EA, dos Santos Cabral A, Wanz X, Freisinger E (2013) Metallomics 5:1204–1214

    Article  PubMed  CAS  Google Scholar 

  42. Seo S, Tan-Wilson A, Wilson KA (2001) Biochim Biophys Acta 1545:192–206

    Article  PubMed  CAS  Google Scholar 

  43. Palacios O, Pagani A, Perez-Rafael S, Egg M, Höckner M, Brandstätter A, Capdevila M, Atrian S, Dallinger R (2011) BMC Biol 9:4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Perez-Rafael S, Pagani A, Palacios O, Dallinger R, Capdevila M, Atrian S (2013) ZAAC 639:1356–1360

    CAS  Google Scholar 

  45. Blindauer CA, Razi MT, Campopiano DJ, Sadler PJ (2007) J Biol Inorg Chem 12:393–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministerio de Economía y Competitividad, Grants BIO2012-39682-C02-01 (to SA) and 02 (to MC), which are co-financed by the European Union through the FEDER program, and from CONICET (Argentina) PIP 2011-2013 0061 (to MAP). Authors from both Barcelona universities are members of the 2009SGR-1457 Grup de Recerca de la Generalitat de Catalunya. Cooperation with Argentina was financed by the “Acción Integrada” Grant AR2009-0011 (Spain) and ES09/02 (Argentina). We thank the Centres Científics i Tecnològics (CCiT) de la Universitat de Barcelona (ICP-AES, DNA sequencing) and the Servei d’Anàlisi Química (SAQ) de la Universitat Autònoma de Barcelona (CD, UV–Vis, ESI-MS) for allocating instrument time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia Atrian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomas, M., Pagani, M.A., Andreo, C.S. et al. His-containing plant metallothioneins: comparative study of divalent metal-ion binding by plant MT3 and MT4 isoforms. J Biol Inorg Chem 19, 1149–1164 (2014). https://doi.org/10.1007/s00775-014-1170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1170-1

Keywords

Navigation