Skip to main content
Log in

Mo–Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The orange protein (ORP) isolated from the sulfate-reducing bacterium Desulfovibrio gigas (11.8 kDa) contains a mixed-metal sulfide cluster of the type [S2MoS2CuS2MoS2]3- noncovalently bound to the polypeptide chain. The D. gigas ORP was heterologously produced in Escherichia coli in the apo form. Different strategies were used to reconstitute the metal cluster into apo-ORP and obtain insights into the metal cluster synthesis: (1) incorporation of a synthesized inorganic analogue of the native metal cluster and (2) the in situ synthesis of the metal cluster on the addition to apo-ORP of copper chloride and tetrathiomolybdate or tetrathiotungstate. This latter procedure was successful, and the visible spectrum of the Mo–Cu reconstituted ORP is identical to the one reported for the native protein with absorption maxima at 340 and 480 nm. The 1H–15N heteronuclear single quantum coherence spectra of the reconstituted ORP obtained by strategy 2, in contrast to strategy 1, exhibited large changes, which required sequential assignment in order to identify, by chemical shift differences, the residues affected by the incorporation of the cluster, which is stabilized inside the protein by both electrostatic and hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muller A, Sarkar S (1977) Angew Chem Int Ed Engl 16(10):705–707

    Article  Google Scholar 

  2. Muller A, Diemann E, Jostes R, Bogge H (1981) Angew Chem Int Ed Engl 20(11):934–955

    Article  Google Scholar 

  3. Laurie SH (2000) Eur J Inorg Chem 2000(12):2443–2450

  4. Jeannin Y, Secheresse F, Bernes S, Robert F (1992) Inorg Chim Acta 198:493–505

    Article  Google Scholar 

  5. Wu DX, Hong MC, Cao R, Liu HQ (1996) Inorg Chem 35(4):1080–1082

    Article  CAS  PubMed  Google Scholar 

  6. Quagraine EK, Reid RS (2001) J Inorg Biochem 85(1):53–60

    Article  CAS  PubMed  Google Scholar 

  7. Elgallad TT, Mills CF, Bremner I, Summers R (1983) J Inorg Biochem 18(4):323–334

    Article  CAS  Google Scholar 

  8. Chidambaram MV, Barnes G, Frieden E (1984) J Inorg Biochem 22(4):231–239

    Article  CAS  PubMed  Google Scholar 

  9. Juarez JC, Betancourt O Jr, Pirie-Shepherd SR, Guan X, Price ML, Shaw DE, Mazar AP, Donate F (2006) Clin Cancer Res 12(16):4974–4982

    Article  CAS  PubMed  Google Scholar 

  10. Park KH, Park YD, Lee JR, Hahn HS, Lee SJ, Bae CD, Yang JM, Kim DE, Hahn MJ (2005) Biochim Biophys Acta 1726(1):115–120

    Article  CAS  PubMed  Google Scholar 

  11. Bissig KD, Voegelin TC, Solioz M (2001) FEBS Lett 507(3):367–370

    Article  CAS  PubMed  Google Scholar 

  12. Brewer GJ (2000) J Trace Elem Exp Med 13(1):51–61

    Article  CAS  Google Scholar 

  13. Zhang L, Lichtmannegger J, Summer KH, Webb S, Pickering IJ, George GN (2009) Biochemistry 48(5):891–897

    Article  CAS  PubMed  Google Scholar 

  14. George GN, Pickering IJ, Harris HH, Gailer J, Klein D, Lichtmannegger J, Summer KH (2003) J Am Chem Soc 125(7):1704–1705

    Article  CAS  PubMed  Google Scholar 

  15. Lee VE, Schulman JM, Stiefel EI, Lee CC (2007) J Inorg Biochem 101(11–12):1707–1718

    Article  CAS  PubMed  Google Scholar 

  16. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) Nat Genet 5(4):327–337

    Article  CAS  PubMed  Google Scholar 

  17. Petrukhin K, Fischer SG, Pirastu M, Tanzi RE, Chernov I, Devoto M, Brzustowicz LM, Cayanis E, Vitale E, Russo JJ et al (1993) Nat Genet 5(4):338–343

    Article  CAS  PubMed  Google Scholar 

  18. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM et al (1993) Nat Genet 5(4):344–350

    Article  CAS  PubMed  Google Scholar 

  19. Fink JK, Hedera P, Brewer GJ (1999) Neurologist 5(4):171–185

    Article  Google Scholar 

  20. Loudianos G, Gitlin JD (2000) Semin Liver Dis 20(3):353–364

    Article  CAS  PubMed  Google Scholar 

  21. Walshe JM (2006) Mov Disord 21(2):142–147

    Article  PubMed  Google Scholar 

  22. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Lancet 369(9559):397–408

    Article  CAS  PubMed  Google Scholar 

  23. Pfeiffer RF (2007) Semin Neurol 27(2):123–132

    Article  PubMed  Google Scholar 

  24. Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Science 278(5339):853–856

    Article  CAS  PubMed  Google Scholar 

  25. Huffman DL, O’Halloran TV (2000) J Biol Chem 275(25):18611–18614

    Article  CAS  PubMed  Google Scholar 

  26. Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernandez MA, Marvin RG, Kelly RA, Mondragon A, Penner-Hahn JE, O’Halloran TV (2010) Science 327(5963):331–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Blackburn NJ (2010) Chem Biol 17(1):8–9

    Article  CAS  PubMed  Google Scholar 

  28. Bursakov SA, Gavel OY, Di Rocco G, Lampreia J, Calvete J, Pereira AS, Moura JJG, Moura I (2004) J Inorg Biochem 98(5):833–840

    Article  CAS  PubMed  Google Scholar 

  29. George GN, Pickering IJ, Yu EY, Prince RC, Bursakov SA, Gavel OY, Moura I, Moura JJG (2000) J Am Chem Soc 122(34):8321–8322

    Article  CAS  Google Scholar 

  30. Fievet A, My L, Cascales E, Ansaldi M, Pauleta SR, Moura I, Dermoun Z, Bernard CS, Dolla A, Aubert C (2011) J Bacteriol 193(13):3207–3219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pauleta SR, Duarte AG, Carepo MS, Pereira AS, Tavares P, Moura I, Moura JJ (2007) Biomol NMR Assign 1(1):81–83

    Article  CAS  PubMed  Google Scholar 

  32. Moura JG, Macedo AL, Nuno Palma P (1994) Methods Enzymol 243:165–188

    Google Scholar 

  33. Muller A, Bogge H, Schimanski U, Penk M, Nieradzik K, Dartmann M, Krickemeyer E, Schimanski J, Romer C, Romer M, Dornfeld H, Wienboker U, Hellmann W, Zimmermann M (1989) Monatsh Chem 120(5):367–391

    Article  Google Scholar 

  34. McDonald JW, Friesen GD, Rosenhein LD, Newton WE (1983) Inorg Chim Acta 72:205–210

    Article  CAS  Google Scholar 

  35. Ferentz AE, Wagner G (2000) Q Rev Biophys 33(1):29–65

    Article  CAS  PubMed  Google Scholar 

  36. Garrett DS, Seok YJ, Peterkofsky A, Clore GM, Gronenborn AM (1997) Biochemistry 36(15):4393–4398

    Article  CAS  PubMed  Google Scholar 

  37. Bursakov SA, Gavel OY, Di Rocco G, Lampreia J, Calvete J, Pereira AS, Moura JJ, Moura I (2004) J Inorg Biochem 98(5):833–840

    Article  CAS  PubMed  Google Scholar 

  38. Rivas MG, Carepo MS, Mota CS, Korbas M, Durand MC, Lopes AT, Brondino CD, Pereira AS, George GN, Dolla A, Moura JJ, Moura I (2009) Biochemistry 48(5):873–882

    Article  CAS  PubMed  Google Scholar 

  39. Etezady-Esfarjani T, Herrmann T, Peti W, Klock HE, Lesley SA, Wuthrich K (2004) J Biomol NMR 29(3):403–406

    Article  CAS  PubMed  Google Scholar 

  40. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fundação para a Ciência e a Tecnologia (FCT) for financial support (projects PTDC/QUI-BIQ/098071/2008 and FCT-ANR/BBB-MET/0023/2012). We acknowledge LabRMN at FCT-UNL and Rede Nacional de RMN for access to the facilities. The NMR spectrometers are part of the National NMR Facility, supported by FCT, Projecto de Re-Equipamento Científico, Portugal, and RECI/BBB-BQB/0230/2012. This work was financed by national funds from FCT under project PEst-C/EQB/LA0006/2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sofia R. Pauleta or José J. G. Moura.

Additional information

This article is dedicated to the memory of Professor Ivano Bertini.

Responsible Editors: Lucia Banci and Claudio Luchinat.

M. S. P. Carepo and S. R. Pauleta contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carepo, M.S.P., Pauleta, S.R., Wedd, A.G. et al. Mo–Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas . J Biol Inorg Chem 19, 605–614 (2014). https://doi.org/10.1007/s00775-014-1107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1107-8

Keywords

Navigation