Skip to main content
Log in

Chitosan-modified cobalt oxide nanoparticles stimulate TNF-α-mediated apoptosis in human leukemic cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to develop chitosan-based delivery of cobalt oxide nanoparticles to human leukemic cells and investigate their specific induction of apoptosis. The physicochemical properties of the chitosan-coated cobalt oxide nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Fourier transform infrared spectroscopy. The solubility of chitosan-coated cobalt oxide nanoparticles was higher at acidic pH, which helps to release more cobalt ions into the medium. Chitosan-coated cobalt oxide nanoparticles showed good compatibility with normal cells. However, our results showed that exposure of leukemic cells (Jurkat cells) to chitosan-coated cobalt oxide nanoparticles caused an increase in reactive oxygen species generation that was abolished by pretreatment of cells with the reactive oxygen species scavenger N-acetyl-l-cysteine. The apoptosis of Jurkat cells was confirmed by flow-cytometric analysis. Induction of TNF-α secretion was observed from stimulation of Jurkat cells with chitosan-coated cobalt oxide nanoparticles. We also tested the role of TNF-α in the induction of Jurkat cell death in the presence of TNF-α and caspase inhibitors. Treatment of leukemic cells with a blocker had a greater effect on cancer cell viability. From our findings, oxidative stress and caspase activation are involved in cancer cell death induced by chitosan-coated cobalt oxide nanoparticles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Papis E, Rossi F, Raspanti M, Isabella DD, Colombo G, Milzani A, Bernardini G, Gornati R (2009) Toxicol Lett 189:253–259

    Article  CAS  PubMed  Google Scholar 

  2. Parkes LM, Hodgson R, Lu LT, Tung LD, Robinson I, Fernig DG, Thanh NT (2008) Contrast Media Mol Imag 3:150–156

    Article  CAS  Google Scholar 

  3. Pardoe H, Chua-anusorn W, Pierre TG, Dobson J (2001) J Magn Magn Mater 225:41–46

    Article  CAS  Google Scholar 

  4. Hubert PM, Guerrero G, Vioux A (2005) J Mater Chem 15:3761–3768

    Article  Google Scholar 

  5. Chung YC, Tsai CF, Li CF (2006) Fish Sci 72:1096–1103

    Article  CAS  Google Scholar 

  6. Shi SF, Jia JF, Guo XK, Zhao YP, Chen DS, Guo YY, Cheng T, Zhang XL (2012) Int J Nanomed 7:5593–5602

    CAS  Google Scholar 

  7. Chattopadhyay S, Chakraborty SP, Laha D, Baral R, Pramanik P, Roy S (2012) Cancer Nanotechnol 3:13–23

    Article  CAS  Google Scholar 

  8. Ghosh T, Chattopadhyay T, Das S, Mondal S, Suresh E, Zangrando E, Das D (2011) Cryst Growth Des 11:3198–3205

    Article  CAS  Google Scholar 

  9. Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel F, Brown GE, Lowry GV (2012) Environ Sci Technol 46:752–759

    Article  CAS  PubMed  Google Scholar 

  10. Hudson L, Hay FC (1991) Practical immunology, 3rd edn. Blackwell, Oxford, pp 21–22

    Google Scholar 

  11. Chattopadhyay S, Dash SK, Ghosh T, Das D, Pramanik P, Roy S (2013) Cancer Nanotechnol 4:103–116

    Article  Google Scholar 

  12. Lin YS, Haynes LC (2010) J Am Chem Soc 132:4834–4842

    Article  CAS  PubMed  Google Scholar 

  13. Gaither LA, Eide DJ (2001) J Biol Chem 276(25):22258–22264

    Article  CAS  PubMed  Google Scholar 

  14. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Nanotechnology 19:295103

    Article  PubMed Central  PubMed  Google Scholar 

  15. Roa W, Xiaojing Z, Guo L, Shaw A, Hu X, Xiong Y, Gulavita S, Patel S, Sun X, Chen J, Moor R, Xing JZ (2009) Nanotechnology 20:1–9

    Google Scholar 

  16. Wang L, Du F, Wang X (2008) Cell 133:693–703

    Article  CAS  PubMed  Google Scholar 

  17. Pelagi M, Curnis F, Colombo B, Rovere P, Sacchi A, Manfredi AA, Corti A (2000) Eur Cytokine Netw 11:580–588

    CAS  PubMed  Google Scholar 

  18. Huh PW, Kotasek D, Jacob HS, Vercellotti GM, Hammerschmidt DE (1985) Clin Res 33:866–878

    Google Scholar 

  19. Schade UF (1989) Eicosanoids 2:183–187

    CAS  PubMed  Google Scholar 

  20. Schade UF (1990) Circ Shock 31:171–181

    CAS  PubMed  Google Scholar 

  21. Marques LJ, Zheng L, Poulakis N, Guzman J, Costabel U (1999) Am J Respir Crit Care Med 159:508–511

    Article  CAS  PubMed  Google Scholar 

  22. Okada M, Sagawa T, Tominaga A, Kodama T, Hitsumoto Y (1996) Immunology 89:158–164

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. Das M, Mishra D, Maiti TK, Basak A, Pramanik P (2008) Nanotechnology 19:415101

    Article  PubMed  Google Scholar 

  25. Greish YE, Brown PW (2001) Biomaterials 22:807–816

    Article  CAS  PubMed  Google Scholar 

  26. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nat Nanotechnol 2:751

    Article  CAS  PubMed  Google Scholar 

  27. Sanpui P, Chattopadhyay A, Ghosh SS (2011) ACS Appl Mater Interfaces 3:218–228

    Article  CAS  PubMed  Google Scholar 

  28. Xia T, Kovochich M, Liong M, Ma L, Gilbert B, Shi H, Yeh JI, Jeffrey I, Andre E (2008) ACS Nanotechnol 2(10):2121–2134

    CAS  Google Scholar 

  29. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Environ Health Perspect 155:403–409

    Google Scholar 

  30. Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P (2007) Nanotechnology 18:385102–385111

    Article  Google Scholar 

  31. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Chem Biol 12:1227–1234

    Article  CAS  PubMed  Google Scholar 

  32. Resnitzky P, Bustan A, Peled A, Marikovsky Y (1988) Leuk Res 12:315–320

    Article  CAS  PubMed  Google Scholar 

  33. Bergelson LD, Dyatlovitskaya EV, Sorokina IV, Gorkova IB (1974) Biochim Biophys Acta 360:361–365

    Google Scholar 

  34. Burlakova EB, Palmina NP, Maltseva EL (1991) In: Vigo-Pelfrey C (ed) Membrane lipid oxidation III. CRC, Boca Raton, pp 209–237

    Google Scholar 

  35. Coleman R, Finean JB (1968) Comp Biochem 23:99–126

    CAS  Google Scholar 

  36. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Nano Lett 6:1794–1807

    Article  CAS  PubMed  Google Scholar 

  37. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Environ Sci Technol 40:4346–4352

    Article  CAS  PubMed  Google Scholar 

  38. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Antioxid Redox Signal 9:49–89

    Article  CAS  PubMed  Google Scholar 

  39. Carmody RJ, Cotter TG (2001) Redox Rep 6:77–90

    Article  CAS  PubMed  Google Scholar 

  40. Yang MH, Jiang JH, Yang YH, Chen XH, Shen GL, Yu RQ (2006) Biosens Bioelectron 21:1791–1797

    Article  CAS  PubMed  Google Scholar 

  41. Boudreau RT, Conrad DM, Hoskin DW (2007) Exp Mol Pathol 83:347–356

    Article  CAS  PubMed  Google Scholar 

  42. Gupta AK, Gupta M (2005) Biomaterials 26:3992–4021

    Google Scholar 

  43. Ishikawa K, Ishii H, Saito T (2006) DNA Cell Biol 25:406–411

    Article  CAS  PubMed  Google Scholar 

  44. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Int J Cancer 121:2381

    Article  CAS  PubMed  Google Scholar 

  45. Lappin MB, Campbell JD (2000) Blood Rev 14:228

    Article  CAS  PubMed  Google Scholar 

  46. Dong C, Flavell RA (2001) Curr Opin Hematol 8:47

    Article  CAS  PubMed  Google Scholar 

  47. Croft M (2009) Nat Rev Immunol 9:271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Fishman MA, Perelson AS (1999) Bull Math Biol 61:403

    Article  CAS  PubMed  Google Scholar 

  49. Endres S, Fulle HJ, Sincha B, Stoll D, Dinarello CA, Gerzer R, Weber PC (1991) Immunology 72:56–60

    CAS  PubMed  Google Scholar 

  50. Spatafora M, Chiappara G, Merendino AM, D’Amico D, Bellia V, Bonsignore G (1994) Eur Respir J 7:223–228

    Article  CAS  PubMed  Google Scholar 

  51. Neuner P, Klosner G, Schauer E, Pourmojib M, Macheiner W, Grünwald C, Knobler R, Schwarz A, Luger TA, Schwarz T (1994) Immunology 83:262–267

    CAS  PubMed  Google Scholar 

  52. Weber CK, Liptay S, Wirth T, Adler G, Schmid RM (2000) Gastroenterology 119:1209–1218

    Google Scholar 

  53. Ashkenazi A, Dixit VM (1998) Science 281(5381):1305–1308

    Article  CAS  PubMed  Google Scholar 

  54. Lombaert N, De Boeck M, Decordier I, Cundari E, Lison D, Kirsch-Volders M (2004) Toxicol Lett 154:23–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express gratefulness to the Department of Biotechnology, Government of India, for funding. The authors also express gratefulness to the Indian Institute of Technology, Kharagpur, and Vidyasagar University, Midnapore, for providing the facilities to execute these studies.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somenath Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, S., Dash, S.K., Kar Mahapatra, S. et al. Chitosan-modified cobalt oxide nanoparticles stimulate TNF-α-mediated apoptosis in human leukemic cells. J Biol Inorg Chem 19, 399–414 (2014). https://doi.org/10.1007/s00775-013-1085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1085-2

Keywords

Navigation