Skip to main content

Advertisement

Log in

Analysis of heat-labile sites generated by reactions of depleted uranium and ascorbate in plasmid DNA

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The goal of this study was to characterize how depleted uranium (DU) causes DNA damage. Procedures were developed to assess the ability of organic and inorganic DNA adducts to convert to single-strand breaks (SSB) in pBR322 plasmid DNA in the presence of heat or piperidine. DNA adducts formed by methyl methanesulfonate, cisplatin, and chromic chloride were compared with those formed by reaction of uranyl acetate and ascorbate. Uranyl ion in the presence of ascorbate produced U–DNA adducts that converted to SSB on heating. Piperidine, which acted on DNA methylated by methyl methanesulfonate to convert methyl–DNA adducts to SSB, served in the opposite fashion as U–DNA adducts by decreasing the level of SSB. The observation that piperidine also decreased the gel shift for metal–DNA adducts formed by monofunctional cisplatin and chromic chloride was interpreted to suggest that piperidine served to remove U–DNA adducts. Radical scavengers did not affect the formation of uranium-induced SSB, suggesting that SSB arose from the presence of U–DNA adducts and not from the presence of free radicals. A model is proposed to predict how U–DNA adducts may serve as initial lesions that convert to SSB or AP sites. The results suggest that DU can act as a chemical genotoxin that does not require radiation for its mode of action. Characterizing the DNA lesions formed by DU is necessary to assess the relative importance of different DNA lesions in the formation of DU-induced mutations. Understanding the mechanisms of formation of DU-induced mutations may contribute to identification of biomarkers of DU exposure in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

Abbreviations

ACES:

N-(2-Acetamido)-2-aminoethanesulfonic acid

Asc:

Ascorbate

CHO:

Chinese hamster ovary

DU:

Depleted uranium

MMS:

Methyl methanesulfonate

N7-MeG:

N 7-Methylguanine

UA:

Uranyl acetate

References

  1. Boice JD Jr, Mumma MT, Blot WJ (2010) Radiat Res 174(5):624–636

    Article  CAS  PubMed  Google Scholar 

  2. Tirmarche M, Harrison J, Laurier D, Blanchardon E, Paquet F, Marsh J (2012) Ann ICRP 41(3–4):368–377

    Article  CAS  PubMed  Google Scholar 

  3. Möhner M, Gellissen J, Marsh JW, Gregoratto D (2010) Health Phys 99(3):314–321

    Article  PubMed  Google Scholar 

  4. Kulich M, Reřicha V, Reřicha R, Shore DL, Sandler DP (2011) Environ Res 111(3):400–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. deLemos JL, Brugge D, Cajero M, Downs M, Durant JL, George CM, Henio-Adeky S, Nez T, Manning T, Rock T, Seschillie B, Shuey C, Lewis J (2009) Environ Health 8:29

  6. Dawson SE, Madsen GE (2011) Health Phys 101(5):618–625

    Article  CAS  PubMed  Google Scholar 

  7. Dinis Mde L, Fiúza A (2012) J Environ Radioact 119:63–69

    Google Scholar 

  8. Miller AC, McClain D (2007) Rev Environ Health 22(1):75–89

    Article  CAS  PubMed  Google Scholar 

  9. Handley-Sidhu S, Keith-Roach MJ, Lloyd JR, Vaughan DJ (2010) Sci Total Environ 408(23):5690–5700

    Article  CAS  PubMed  Google Scholar 

  10. Briner W (2010) Int J Environ Res Public Health 7(1):303–313

    Article  CAS  PubMed  Google Scholar 

  11. Helmer DA, Rossignol M, Blatt M, Agarwal R, Teichman R, Lange G (2007) J Occup Environ Med 49(5):475–480

    Article  PubMed  Google Scholar 

  12. Melanson MA, Geckle LS, Davidson BA (2012) US Army Med Dep J 82–87

  13. The Royal Society (2001) Policy document 6/01. The Royal Society, London

    Google Scholar 

  14. Squibb KS, Gaitens JM, Engelhardt S, Centeno JA, Xu H, Gray P, McDiarmid MA (2012) J Occup Environ Med 54(6):724–732

    Article  CAS  PubMed  Google Scholar 

  15. Todorov TI, Ejnik JW, Guandalini G, Xu H, Hoover D, Anderson L, Squibb K, McDiarmid MA, Centeno JA (2013) J Trace Elem Med Biol 27(1):2–6

    Article  CAS  PubMed  Google Scholar 

  16. Hines SE, Gucer P, Kligerman S, Breyer R, Centeno J, Gaitens J, Oliver M, Engelhardt S, Squibb K, McDiarmid M (2013) J Occup Environ Med 55(8):937–944

    Article  CAS  PubMed  Google Scholar 

  17. Fathi RA, Matti LY, Al-Salih HS, Godbold D (2013) Med Confl Surviv 29(1):7–25

    Article  PubMed  Google Scholar 

  18. Shelleh HH (2012) Saudi Med 33(5):483–488

    Google Scholar 

  19. Al-Hadithi TS, Al-Diwan JK, Saleh AM, Shabila NP (2012) Confl Health 6(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  20. Aitken M (1999) BMJ 319(7207):401

    Article  CAS  PubMed  Google Scholar 

  21. Papastefanou C (2002) Health Phys 83(2):280–282

    Article  CAS  PubMed  Google Scholar 

  22. Krupka KM, Parkhurst MA, Gold K, Arey BW, Jenson ED, Guilmette RA (2009) Health Phys 96(3):276–291

    Article  CAS  PubMed  Google Scholar 

  23. Craft E, Abu-Qare A, Flaherty M, Garofolo M, Rincavage H, Abou-Donia M (2004) J Toxicol Environ Health B Crit Rev 7(4):297–317

    Article  CAS  PubMed  Google Scholar 

  24. Heffernan TE, Lodwick JC, Spitz H, Neton J, Soldano M (2001) Health Phys 80(3):255–262

    Article  CAS  PubMed  Google Scholar 

  25. Lind OC, Salbu B, Skipperud L, Janssens K, Jaroszewicz J, De Nolf W (2009) J Environ Radioact 100(4):301–307

    Article  CAS  PubMed  Google Scholar 

  26. Eidson AF (1994) Health Phys 67(1):1–14

    Article  CAS  PubMed  Google Scholar 

  27. Pearson RG (1963) J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  28. Van Horn JD, Huang H (2006) Coord Chem Rev 250:765–775

    Article  Google Scholar 

  29. Zobel CR, Beer M (1961) J Biophys Biochem Cytol 10:335–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lin RH, Wu LJ, Lee CH, Lin-Shiau SY (1993) Mutat Res 319(3):197–203

    Article  CAS  PubMed  Google Scholar 

  31. Miller AC, Blakely WF, Livengood D, Whittaker T, Xu J, Ejnik JW, Hamilton MM, Parlette E, John TS, Gerstenberg HM, Hsu H (1998) Environ Health Perspect 106(8):465–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Darolles C, Broggio D, Feugier A, Frelon S, Dublineau I, De Meo M, Petitot F (2010) Toxicol Lett 192(3):337–348

    Article  CAS  PubMed  Google Scholar 

  33. Stearns DM, Yazzie M, Bradley AS, Coryell VH, Shelley JT, Ashby A, Asplund CS, Lantz RC (2005) Mutagenesis 20(6):417–423

    Article  CAS  PubMed  Google Scholar 

  34. McDiarmid MA, Albertini RJ, Tucker JD, Vacek PM, Carter EW, Bakhmutsky MV, Oliver MS, Engelhardt SM, Squibb KS (2011) Environ Mol Mutagen 52(7):569–581

    Article  CAS  PubMed  Google Scholar 

  35. Coryell VH, Stearns DM (2006) Mol Carcinog 45(1):60–72

    Article  CAS  PubMed  Google Scholar 

  36. Jostes RF, Fleck EW, Morgan TL, Stiegler GL, Cross FT (1994) Radiat Res 137(3):371–379

    Article  CAS  PubMed  Google Scholar 

  37. Yazzie M, Gamble SL, Civitello ER, Stearns DM (2003) Chem Res Toxicol 16(4):524–530

    Article  CAS  PubMed  Google Scholar 

  38. Miller AC, Stewart M, Brooks K, Shi L, Page N (2002) J Inorg Biochem 91(1):246–252

    Article  CAS  PubMed  Google Scholar 

  39. Zhitkovich A (2011) Chem Res Toxicol 24(10):1617–1629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Stearns DM, Wetterhahn KE (1994) Chem Res Toxicol 7(2):219–230

    Article  CAS  PubMed  Google Scholar 

  41. Taqui Khan MM, Martell AE (1969) J Am Chem Soc 91(17):4668–4672

    Google Scholar 

  42. Comyns AE (1960) Chem Rev 60(2):115–146

    Article  CAS  Google Scholar 

  43. Mattes WB, Hartley JA, Kohn KW (1986) Biochim Biophys Acta 868(1):71–76

    Article  CAS  PubMed  Google Scholar 

  44. Karpas Z, Lorber A, Sela H, Paz-Tal O, Hagag Y, Kurttio P, Salonen L (2005) Health Phys 89(4):315–321

    Article  CAS  PubMed  Google Scholar 

  45. Víglaský V, Antalík M, Adamcík J, Podhradský D (2000) Nucleic Acids Res 28(11):e51

    Article  PubMed  Google Scholar 

  46. Treiber DK, Chen Z, Essigmann JM (1992) Nucleic Acids Res 20(21):5805–5810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Beranek DT, Heflich RH, Kodell RL, Morris SM, Casciano DA (1983) Mutat Res 110(1):171–180

    Article  CAS  PubMed  Google Scholar 

  48. Boysen G, Pachkowski BF, Nakamura J, Swenberg JA (2009) Mutat Res 678(2):76–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Eastman A (1986) Biochemistry 25(13):3912–3915

    Article  CAS  PubMed  Google Scholar 

  50. Schaller W, Reisner H, Holler E (1987) Biochemistry 26(3):943–950

    Article  CAS  PubMed  Google Scholar 

  51. Takahara PM, Frederick CA, Lippard SJ (1996) J Am Chem Soc 118:12309–12321

    Article  CAS  Google Scholar 

  52. Bellon SF, Coleman JH, Lippard SJ (1991) Biochemistry 30(32):8026–8035

    Article  CAS  PubMed  Google Scholar 

  53. Bauer WR (1978) Annu Rev Biophys Bioeng 7:287–313

    Article  CAS  PubMed  Google Scholar 

  54. Keck MV, Lippard SJ (1992) J Am Chem Soc 114:3386–3390

    Article  CAS  Google Scholar 

  55. Ponti M, Forrow SM, Souhami RL, D’Incalci M, Hartley JA (1991) Nucleic Acids Res 19(11):2929–2933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Blankert SA, Coryell VH, Picard BT, Wolf KK, Lomas RE, Stearns DM (2003) Chem Res Toxicol 16(7):847–854

    Article  CAS  PubMed  Google Scholar 

  57. Reynolds M, Peterson E, Quievryn G, Zhitkovich A (2004) J Biol Chem 279(29):30419–30424

    Article  CAS  PubMed  Google Scholar 

  58. Buettner GR, Jurkiewicz BA (1996) Radiat Res 145(5):532–541

    Article  CAS  PubMed  Google Scholar 

  59. Nielsen PE, Hiort C, Sönnichsen SH, Buchardt O, Dahl O, Norden B (1992) J Am Chem Soc 114(13):4967–4975

    Article  CAS  Google Scholar 

  60. Ward JF (1988) Prog Nucleic Acid Res Mol Biol 35:95–125

    CAS  PubMed  Google Scholar 

  61. Hada M, Georgakilas AG (2008) J Radiat Res 49(3):203–210

    Article  CAS  PubMed  Google Scholar 

  62. Nielsen PE, Møllegaard NE, Jeppesen C (1990) Nucleic Acids Res 18(13):3847–3851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Sönnichsen SH, Nielsen PE (1996) J Mol Recognit 9(3):219–227

    Article  PubMed  Google Scholar 

  64. Wu Q, Cheng X, Hofstadler SA, Smith RD (1996) J Mass Spectrom 31(6):669–675

    Article  CAS  PubMed  Google Scholar 

  65. Galindo MA, Amantia D, Martinez AM, Clegg W, Harrington RW, Martinez VM, Houlton A (2009) Inorg Chem 48(21):10295–10303

    Article  CAS  PubMed  Google Scholar 

  66. Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1981) Proc Natl Acad Sci USA 78(4):2179–2183

    Article  CAS  PubMed  Google Scholar 

  67. Neidle S (1994) DNA structure and recognition. Oxford University Press, Oxford, p 47

    Google Scholar 

  68. PyMol molecular visualization open source software, version 1.6; http://pymol.org

  69. Los Alamos National Laboratory (2011) Periodic table of the elements: Los Alamos National Laboratory. http://periodic.lanl.gov/list.shtml

  70. Okonogi TM, Alley SC, Harwood EA, Hopkins PB, Robinson BH (2002) Proc Natl Acad Sci USA 99(7):4156–4160

    Article  CAS  PubMed  Google Scholar 

  71. Gessner RV, Quigley GJ, Wang AH, van der Marel GA, van Boom JH, Rich A (1985) Biochemistry 24(2):237–240

    Article  CAS  PubMed  Google Scholar 

  72. Eichhorn GL, Shin YA (1968) J Am Chem Soc 90(26):7323–7328

    Article  CAS  PubMed  Google Scholar 

  73. Shin YA, Eichhorn GL (1968) Biochemistry 7(3):1026–1032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R15 ES019703. J.W. was supported by the STEP program within the Partnership for Native American Cancer Prevention (NIH grant U54 CA143925), and the John & Sophie Ottens Native American Student Research Program. A.Y. was supported by the Northern Arizona University Bridges Program (NIH grant R25 GM102788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane M. Stearns.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J., Young, A., Civitello, E.R. et al. Analysis of heat-labile sites generated by reactions of depleted uranium and ascorbate in plasmid DNA. J Biol Inorg Chem 19, 45–57 (2014). https://doi.org/10.1007/s00775-013-1057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1057-6

Keywords

Navigation