Skip to main content
Log in

Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The human vaccinia-related kinase (VRK) proteins VRK1 and VRK2 regulate different processes, such as the cell cycle, DNA damage response, and signaling by mitogen-activated protein kinases in response to growth factors or cellular stress. Alterations in expression levels of these Ser–Thr kinases are associated with cancer and neurodegenerative diseases. These functions suggest that they might also be targets of toxic metals, and thus contribute to the pathogenic effects associated with metal intoxication. VRK1 is inhibited by cadmium, copper, and mercury, and VRK2 is more sensitive to cadmium and much less sensitive to copper and mercury. Both kinases are insensitive to lead and cobalt. VRK1 is in general more sensitive than VRK2 in the low micromolar range. This inhibitory effect induced by these metals was detected in an autophosphorylation assay, as well as in phosphorylation assays using p53 and histone H3 as substrates. The accumulation of these three metals in cells can contribute, by inhibition of VRKs, to their toxic pathogenic effects, particularly their neurological manifestations. In this context copper has not generally been associated with any intoxication syndrome, except Wilson’s syndrome, but it might be implicated in some alterations with which it has not yet been associated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MAPK:

Mitogen-activated protein kinase

VRK:

Vaccinia-related kinase

References

  1. Hu H (2012) Heavy metal poisoning. In: Longo D, Fauci A, Kasper D, Hauser S, Jameson J, Loscalzo J (eds) Harrison’s principles of internal medicine. McGraw-Hill, New York

    Google Scholar 

  2. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  3. Lopez-Borges S, Lazo PA (2000) The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene 19:3656–3664

    Article  PubMed  CAS  Google Scholar 

  4. Nichols RJ, Traktman P (2004) Characterization of three paralogous members of the mammalian vaccinia related kinase family. J Biol Chem 279:7934–7946

    Article  PubMed  CAS  Google Scholar 

  5. Blanco S, Klimcakova L, Vega FM, Lazo PA (2006) The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J 273:2487–2504

    Article  PubMed  CAS  Google Scholar 

  6. Nezu J, Oku A, Jones MH, Shimane M (1997) Identification of two novel human putative serine/threonine kinases, VRK1 and VRK2, with structural similarity to vaccinia virus B1R kinase. Genomics 45:327–331

    Article  PubMed  CAS  Google Scholar 

  7. Vega FM, Gonzalo P, Gaspar ML, Lazo PA (2003) Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Lett 544:176–180

    Article  PubMed  CAS  Google Scholar 

  8. Santos CR, Rodriguez-Pinilla M, Vega FM et al (2006) VRK1 signaling pathway in the context of the proliferation phenotype in head and neck squamous cell carcinoma. Mol Cancer Res 4:177–185

    Article  PubMed  CAS  Google Scholar 

  9. Valbuena A, Lopez-Sanchez I, Lazo PA (2008) Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS ONE 3:e1642

    Article  PubMed  Google Scholar 

  10. Sevilla A, Santos CR, Barcia R et al (2004) c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene 23:8950–8958

    Article  PubMed  CAS  Google Scholar 

  11. Sevilla A, Santos CR, Vega FM, Lazo PA (2004) Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on Thr-73 and Ser-62 and cooperates with JNK. J Biol Chem 279:27458–27465

    Article  PubMed  CAS  Google Scholar 

  12. Kang TH, Park DY, Kim W, Kim KT (2008) VRK1 phosphorylates CREB and mediates CCND1 expression. J Cell Sci 121:3035–3041

    Article  PubMed  CAS  Google Scholar 

  13. Kang TH, Park DY, Choi YH et al (2007) Mitotic histone H3 phosphorylation by vaccinia-related kinase 1 in mammalian cells. Mol Cell Biol 27:8533–8546

    Article  PubMed  CAS  Google Scholar 

  14. Sanz-Garcia M, Lopez-Sanchez I, Lazo PA (2008) Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteomics 7:2199–2214

    Article  PubMed  CAS  Google Scholar 

  15. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  PubMed  CAS  Google Scholar 

  16. Teufel DP, Bycroft M, Fersht AR (2009) Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 28:2112–2118

    Article  PubMed  CAS  Google Scholar 

  17. Meek DW, Anderson CW (2009) Posttranslational Modification of p53: Cooperative Integrators of Function. Cold Spring Harb Perspect Biol 1:a000950

    Article  PubMed  Google Scholar 

  18. Valbuena A, Sanz-Garcia M, Lopez-Sanchez I et al (2011) Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal 23:1267–1272

    Article  PubMed  CAS  Google Scholar 

  19. Lopez-Sanchez I, Sanz-Garcia M, Lazo PA (2009) Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces Golgi fragmentation. Mol Cell Biol 29:1189–1201

    Article  PubMed  CAS  Google Scholar 

  20. Sanz-Garcia M, Monsalve DM, Sevilla A, Lazo PA (2012) Vaccinia-related Kinase 1 (VRK1) is an upstream nucleosomal kinase required for the assembly of 53BP1 foci in response to ionizing radiation-induced DNA damage. J Biol Chem 287:23757–23768

    Article  PubMed  CAS  Google Scholar 

  21. Renbaum P, Kellerman E, Jaron R et al (2009) Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet 85:281–289

    Article  PubMed  CAS  Google Scholar 

  22. Nichols RJ, Wiebe MS, Traktman P (2006) The vaccinia-related kinases phosphorylate the N’ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol Biol Cell 17:2451–2464

    Article  PubMed  CAS  Google Scholar 

  23. Gorjanacz M, Klerkx EP, Galy V et al (2008) Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J 26:132–143

    Article  Google Scholar 

  24. Montes de Oca R, Shoemaker CJ, Gucek M et al (2009) Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS ONE 4:e7050

    Article  PubMed  Google Scholar 

  25. Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638

    Article  PubMed  CAS  Google Scholar 

  26. Rass U, Ahel I, West SC (2007) Defective DNA repair and neurodegenerative disease. Cell 130:991–1004

    Article  PubMed  CAS  Google Scholar 

  27. Blanco S, Santos C, Lazo PA (2007) Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol 27:7273–7283

    Article  PubMed  CAS  Google Scholar 

  28. Blanco S, Sanz-Garcia M, Santos CR, Lazo PA (2008) Modulation of interleukin-1 transcriptional response by the interaction between VRK2 and the JIP1 scaffold protein. PLoS ONE 3:e1660

    Article  PubMed  Google Scholar 

  29. Fernandez IF, Blanco S, Lozano J, Lazo PA (2010) VRK2 inhibits mitogen-activated protein kinase signaling and inversely correlates with ErbB2 in human breast cancer. Mol Cell Biol 30:4687–4697

    Article  PubMed  CAS  Google Scholar 

  30. Fernandez IF, Perez-Rivas LG, Blanco S et al (2012) VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cell Mol Life Sci 69:3881–3893

    Article  PubMed  CAS  Google Scholar 

  31. Steinberg S, de Jong S, Andreassen OA et al (2011) Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 20:4076–4081

    Article  PubMed  CAS  Google Scholar 

  32. Vazquez-Cedeira M, Lazo PA (2012) Human VRK2 (Vaccinia-related Kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem 287:42739–42750

    Article  PubMed  CAS  Google Scholar 

  33. Shin J, Chakraborty G, Bharatham N et al (2011) NMR solution structure of human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability and autocatalytic activity. J Biol Chem 286:22131–22138

    Article  PubMed  CAS  Google Scholar 

  34. Scheeff ED, Eswaran J, Bunkoczi G et al (2009) Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128–138

    Article  PubMed  CAS  Google Scholar 

  35. Fedorov O, Marsden B, Pogacic V et al (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA 104:20523–20528

    Article  PubMed  CAS  Google Scholar 

  36. Fedorov O, Sundstrom M, Marsden B, Knapp S (2007) Insights for the development of specific kinase inhibitors by targeted structural genomics. Drug Discov Today 12:365–372

    Article  PubMed  CAS  Google Scholar 

  37. Vazquez-Cedeira M, Barcia-Sanjurjo I, Sanz-Garcia M et al (2011) Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS ONE 6:e23235

    Article  PubMed  CAS  Google Scholar 

  38. Santos CR, Vega FM, Blanco S et al (2004) The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism. Virology 328:254–265

    Article  PubMed  CAS  Google Scholar 

  39. Valbuena A, Lopez-Sanchez I, Vega FM et al (2007) Identification of a dominant epitope in human vaccinia-related kinase 1 (VRK1) and detection of different intracellular subpopulations. Arch Biochem Biophys 465:219–226

    Article  PubMed  CAS  Google Scholar 

  40. Barcia R, Lopez-Borges S, Vega FM, Lazo PA (2002) Kinetic properties of p53 phosphorylation by the human vaccinia-related kinase 1. Arch Biochem Biophys 399:1–5

    Article  PubMed  CAS  Google Scholar 

  41. Monsalve DM, Merced T, Fernandez IF et al (2013) Cell Death Dis 4:e513. doi:10.1038/cddis.2013.40

    Article  PubMed  CAS  Google Scholar 

  42. Foulkes EC (2000) Transport of toxic heavy metals across cell membranes. Proc Soc Exp Biol Med 223:234–240

    Article  PubMed  CAS  Google Scholar 

  43. Banham AH, Leader DP, Smith GL (1993) Phosphorylation of ribosomal proteins by the vaccinia virus B1R protein kinase. FEBS Lett 321:27–31

    Article  PubMed  CAS  Google Scholar 

  44. Speizer LA, Watson MJ, Kanter JR, Brunton LL (1989) Inhibition of phorbol ester binding and protein kinase C activity by heavy metals. J Biol Chem 264:5581–5585

    PubMed  CAS  Google Scholar 

  45. Koga M, Zwaal R, Guan KL et al (2000) A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses. EMBO J 19:5148–5156

    Article  PubMed  CAS  Google Scholar 

  46. Kim DH, Liberati NT, Mizuno T et al (2004) Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc Natl Acad Sci USA 101:10990–10994

    Article  PubMed  CAS  Google Scholar 

  47. Wiebe MS, Nichols RJ, Molitor TP et al (2010) Mice deficient in the serine/threonine protein kinase VRK1 are infertile due to a progressive loss of spermatogonia. Biol Reprod 82:182–193

    Article  PubMed  CAS  Google Scholar 

  48. Schober CS, Aydiner F, Booth CJ et al (2011) The kinase VRK1 is required for normal meiotic progression in mammalian oogenesis. Mech Dev 128:178–190

    Article  PubMed  CAS  Google Scholar 

  49. Choi YH, Park CH, Kim W et al (2010) Vaccinia-related kinase 1 is required for the maintenance of undifferentiated spermatogonia in mouse male germ cells. PLoS ONE 5:e15254

    Article  PubMed  CAS  Google Scholar 

  50. Sanz-Garcia M, Vazquez-Cedeira M, Kellerman E et al (2011) Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteomics 75:548–560

    Article  PubMed  CAS  Google Scholar 

  51. Walker MP, Tian L, Matera AG (2009) Reduced viability, fertility and fecundity in mice lacking the cajal body marker protein, coilin. PLoS ONE 4:e6171

    Article  PubMed  Google Scholar 

  52. Brewer GJ (2008) Wilson′s disease. In: Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J (eds) Harrison’s principles of internal medicine. McGraw-Hill, New York, pp 2449–2452

    Google Scholar 

  53. Sharma HS, Muresanu DF, Patnaik R et al (2011) Superior neuroprotective effects of cerebrolysin in heat stroke following chronic intoxication of Cu or Ag engineered nanoparticles. A comparative study with other neuroprotective agents using biochemical and morphological approaches in the rat. J Nanosci Nanotechnol 11:7549–7569

    Article  PubMed  CAS  Google Scholar 

  54. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  PubMed  Google Scholar 

  55. Xu F, Farkas S, Kortbeek S et al (2012) Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-aspartate receptors. Mol Brain 5:30

    Article  PubMed  CAS  Google Scholar 

  56. Korogi Y, Takahashi M, Shinzato J, Okajima T (1994) MR findings in seven patients with organic mercury poisoning (Minamata disease). Am J Neuroradiol 15:1575–1578

    PubMed  CAS  Google Scholar 

  57. Vega FM, Sevilla A, Lazo PA (2004) p53 Stabilization and accumulation induced by human vaccinia-related kinase 1. Mol Cell Biol 24:10366–10380

    Article  PubMed  CAS  Google Scholar 

  58. Valbuena A, Blanco S, Vega FM, Lazo PA (2008) The C/H3 domain of p300 is required to protect VRK1 and VRK2 from their downregulation induced by p53. PLoS ONE 3:e2649

    Article  PubMed  Google Scholar 

  59. Valbuena A, Castro-Obregon S, Lazo PA (2011) Downregulation of VRK1 by p53 in response to DNA damage is mediated by the autophagic pathway. PLoS ONE 6:e17320

    Article  PubMed  CAS  Google Scholar 

  60. Valbuena A, Vega FM, Blanco S, Lazo PA (2006) p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol Cell Biol 26:4782–4793

    Article  PubMed  CAS  Google Scholar 

  61. Lee CW, Ferreon JC, Ferreon AC et al (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci USA 107:19290–19295

    Article  PubMed  CAS  Google Scholar 

  62. Kim W, Chakraborty G, Kim S et al (2012) Macro histone H2A1.2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase. J Biol Chem 287:5278–5289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I.B.-S. and M.V.-C. have fellowships from Universidad de Santiago and JAE/CSIC/Fondo Social Europeo respectively. This work was funded by grants from Ministerio de Educación, Ciencia e Innovación (SAF2010-14935), Junta de Castilla y León (CSI-006A11-2), and Kutxa-Fundación INBIOMED to P.A.L, and from Xunta de Galicia to R. B.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Lazo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcia-Sanjurjo, I., Vázquez-Cedeira, M., Barcia, R. et al. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. J Biol Inorg Chem 18, 473–482 (2013). https://doi.org/10.1007/s00775-013-0992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-0992-6

Keywords

Navigation