Skip to main content
Log in

VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The spatial and temporal regulation of intracellular signaling is determined by the spatial and temporal organization of complexes assembled on scaffold proteins, which can be modulated by their interactions with additional proteins as well as subcellular localization. The scaffold KSR1 protein interacts with MAPK forming a complex that conveys a differential signaling in response to growth factors. The aim of this work is to determine the unknown mechanism by which VRK2A downregulates MAPK signaling. We have characterized the multiprotein complex formed by KSR1 and the Ser-Thr kinase VRK2A. VRK2A is a protein bound to the endoplasmic reticulum (ER) and retains a fraction of KSR1 complexes on the surface of this organelle. Both proteins, VRK2A and KSR1, directly interact by their respective C-terminal regions. In addition, MEK1 is also incorporated in the basal complex. MEK1 independently interacts with the CA5 region of KSR1 and with the N-terminus of VRK2A. Thus, VRK2A can form a high molecular size (600–1,000 kDa) stable complex with both MEK1 and KSR1. Knockdown of VRK2A resulted in disassembly of these high molecular size complexes. Overexpression of VRK2A increased the amount of KSR1 in the particulate fraction and prevented the incorporation of ERK1/2 into the complex after stimulation with EGF. Neither VRK2A nor KSR1 interact with the VHR, MKP1, MKP2, or MKP3 phosphatases. The KSR1 complex assembled and retained by VRK2A in the ER can have a modulatory effect on the signal mediated by MAPK, thus locally affecting the magnitude of its responses, and can explain differential responses depending on cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ERK:

Extracellular signal regulated kinase (MAPK3)

JIP:

c-Jun interacting protein

JNK:

c-Jun N-terminal Kinase

KSR1:

Kinase suppressor of RAS 1

MAPK:

Mitogen-activated protein kinase

MEK1:

MAPK/ERK kinase 1 (MAP2K1)

VRK:

Vaccinia-related kinase

References

  1. Scott JD, Pawson T (2009) Cell signaling in space and time: where proteins come together and when they’re apart. Science 326:1220–1224

    Article  PubMed  CAS  Google Scholar 

  2. Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686

    Article  PubMed  CAS  Google Scholar 

  3. Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275

    Article  PubMed  CAS  Google Scholar 

  4. von Kriegsheim A, Baiocchi D, Birtwistle M, Sumpton D, Bienvenut W, Morrice N, Yamada K, Lamond A, Kalna G, Orton R, Gilbert D, Kolch W (2009) Cell fate decisions are specified by the dynamic ERK interactome. Nat Cell Biol 11:1458–1464

    Article  Google Scholar 

  5. Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 351(Pt 2):289–305

    Article  PubMed  CAS  Google Scholar 

  6. Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6:827–837

    Article  PubMed  CAS  Google Scholar 

  7. Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP (2007) Scaffold proteins of MAP-kinase modules. Oncogene 26:3185–3202

    Article  PubMed  CAS  Google Scholar 

  8. Turjanski AG, Vaque JP, Gutkind JS (2007) MAP kinases and the control of nuclear events. Oncogene 26:3240–3253

    Article  PubMed  CAS  Google Scholar 

  9. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    Article  PubMed  CAS  Google Scholar 

  10. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  11. Xia Y, Karin M (2004) The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol 14:94–101

    Article  PubMed  CAS  Google Scholar 

  12. Gaestel M (2006) MAPKAP kinases-MKs-two’s company, three’s a crowd. Nat Rev Mol Cell Biol 7:120–130

    Article  PubMed  CAS  Google Scholar 

  13. McKay MM, Ritt DA, Morrison DK (2009) Signaling dynamics of the KSR1 scaffold complex. Proc Nat Acad Sci USA 106:11022–11027

    Article  PubMed  CAS  Google Scholar 

  14. Whitmarsh AJ, Kuan CY, Kennedy NJ, Kelkar N, Haydar TF, Mordes JP, Appel M, Rossini AA, Jones SN, Flavell RA, Rakic P, Davis RJ (2001) Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev 15:2421–2432

    Article  PubMed  CAS  Google Scholar 

  15. Therrien M, Michaud NR, Rubin GM, Morrison DK (1996) KSR modulates signal propagation within the MAPK cascade. Genes Dev 10:2684–2695

    Article  PubMed  CAS  Google Scholar 

  16. McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26:3113–3121

    Article  PubMed  CAS  Google Scholar 

  17. Shin SY, Rath O, Choo SM, Fee F, McFerran B, Kolch W, Cho KH (2009) Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J Cell Sci 122:425–435

    Article  PubMed  CAS  Google Scholar 

  18. Wortzel I, Seger R (2011) The ERK Cascade: distinct functions within various subcellular organelles. Genes Cancer 2:195–209

    Article  PubMed  CAS  Google Scholar 

  19. Blanco S, Santos C, Lazo PA (2007) Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol 27:7273–7283

    Article  PubMed  CAS  Google Scholar 

  20. Blanco S, Sanz-Garcia M, Santos CR, Lazo PA (2008) Modulation of interleukin-1 transcriptional response by the interaction between VRK2 and the JIP1 scaffold protein. PLoS One 3:e1660

    Article  PubMed  Google Scholar 

  21. Fernandez IF, Blanco S, Lozano J, Lazo PA (2010) VRK2 inhibits mitogen-activated protein kinase signaling and inversely correlates with ErbB2 in human breast cancer. Mol Cell Biol 30:4687–4697

    Article  PubMed  CAS  Google Scholar 

  22. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  23. Nichols RJ, Traktman P (2004) Characterization of three paralogous members of the mammalian vaccinia related kinase family. J Biol Chem 279:7934–7946

    Article  PubMed  CAS  Google Scholar 

  24. Lopez-Borges S, Lazo PA (2000) The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene 19:3656–3664

    Article  PubMed  CAS  Google Scholar 

  25. Vega FM, Sevilla A, Lazo PA (2004) p53 Stabilization and accumulation induced by human vaccinia-related kinase 1. Mol Cell Biol 24:10366–10380

    Article  PubMed  CAS  Google Scholar 

  26. Valbuena A, Castro-Obregon S, Lazo PA (2011) Downregulation of VRK1 by p53 in response to DNA damage is mediated by the autophagic pathway. PLoS One 6:e17320

    Article  PubMed  CAS  Google Scholar 

  27. Valbuena A, Lopez-Sanchez I, Lazo PA (2008) Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS One 3:e1642

    Article  PubMed  Google Scholar 

  28. Valbuena A, Sanz-Garcia M, Lopez-Sanchez I, Vega FM, Lazo PA (2011) Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal 23:1267–1272

    Article  PubMed  CAS  Google Scholar 

  29. Valbuena A, Vega FM, Blanco S, Lazo PA (2006) p53 Downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol Cell Biol 26:4782–4793

    Article  PubMed  CAS  Google Scholar 

  30. Blanco S, Klimcakova L, Vega FM, Lazo PA (2006) The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J 273:2487–2504

    Article  PubMed  CAS  Google Scholar 

  31. Alonso A, Merlo JJ, Na S, Kholod N, Jaroszewski L, Kharitonenkov A, Williams S, Godzik A, Posada JD, Mustelin T (2002) Inhibition of T cell antigen receptor signaling by VHR-related MKPX (VHX), a new dual specificity phosphatase related to VH1 related (VHR). J Biol Chem 277:5524–5528

    Article  PubMed  CAS  Google Scholar 

  32. Jagemann LR, Perez-Rivas LG, Ruiz EJ, Ranea JA, Sanchez-Jimenez F, Nebreda AR, Alba E, Lozano J (2008) The functional interaction of 14–3-3 proteins with the ERK1/2 scaffold KSR1 occurs in an isoform-specific manner. J Biol Chem 283:17450–17462

    Article  PubMed  CAS  Google Scholar 

  33. Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, Shokat KM, Barford D (2011) A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472:366–369

    Article  PubMed  CAS  Google Scholar 

  34. Cerignoli F, Rahmouni S, Ronai Z, Mustelin T (2006) Regulation of MAP kinases by the VHR dual-specific phosphatase: implications for cell growth and differentiation. Cell Cycle 5:2210–2215

    Article  PubMed  CAS  Google Scholar 

  35. Rahmouni S, Cerignoli F, Alonso A, Tsutji T, Henkens R, Zhu C, Louis-dit-Sully C, Moutschen M, Jiang W, Mustelin T (2006) Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence. Nat Cell Biol 8:524–531

    Article  PubMed  CAS  Google Scholar 

  36. Kang TH, Kim KT (2006) Negative regulation of ERK activity by VRK3-mediated activation of VHR phosphatase. Nat Cell Biol 8:863–869

    Article  PubMed  CAS  Google Scholar 

  37. Kang TH, Kim KT (2008) VRK3-mediated inactivation of ERK signaling in adult and embryonic rodent tissues. Biochem Biophys Acta 1783:49–58

    Article  PubMed  CAS  Google Scholar 

  38. Yasuda J, Whitmarsh AJ, Cavanagh J, Sharma M, Davis RJ (1999) The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 19:7245–7254

    PubMed  CAS  Google Scholar 

  39. Canal F, Palygin O, Pankratov Y, Correa SA, Muller J (2011) Compartmentalization of the MAPK scaffold protein KSR1 modulates synaptic plasticity in hippocampal neurons. FASEB J 25:2362–2372

    Article  PubMed  CAS  Google Scholar 

  40. Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL (1999) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 19:5523–5534

    PubMed  CAS  Google Scholar 

  41. Yaari-Stark S, Shaked M, Nevo-Caspi Y, Jacob-Hircsh J, Shamir R, Rechavi G, Kloog Y (2010) Ras inhibits endoplasmic reticulum stress in human cancer cells with amplified Myc. Int J Cancer 126:2268–2281

    PubMed  CAS  Google Scholar 

  42. Mukherjee A, Soto C (2011) Role of calcineurin in neurodegeneration produced by misfolded proteins and endoplasmic reticulum stress. Curr Opin Cell Biol 23:223–230

    Article  PubMed  CAS  Google Scholar 

  43. Poksay KS, Madden DT, Peter AK, Niazi K, Banwait S, Crippen D, Bredesen DE, Rao RV (2011) Valosin-containing protein gene mutations: cellular phenotypes relevant to neurodegeneration. J Mol Neurosci 44:91–102

    Article  PubMed  CAS  Google Scholar 

  44. Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545

    Article  PubMed  CAS  Google Scholar 

  45. Karreth FA, DeNicola GM, Winter SP, Tuveson DA (2009) C-Raf inhibits MAPK activation and transformation by B-Raf (V600E). Mol Cell 36:477–486

    Article  PubMed  CAS  Google Scholar 

  46. Chen C, Lewis RE, White MA (2008) IMP modulates KSR1-dependent multivalent complex formation to specify ERK1/2 pathway activation and response thresholds. J Biol Chem 283:12789–12796

    Article  PubMed  CAS  Google Scholar 

  47. Salerno M, Palmieri D, Bouadis A, Halverson D, Steeg PS (2005) Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells. Mol Cell Biol 25:1379–1388

    Article  PubMed  CAS  Google Scholar 

  48. Kortum RL, Lewis RE (2004) The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol Cell Biol 24:4407–4416

    Article  PubMed  CAS  Google Scholar 

  49. Kortum RL, Johnson HJ, Costanzo DL, Volle DJ, Razidlo GL, Fusello AM, Shaw AS, Lewis RE (2006) The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence. Mol Cell Biol 26:2202–2214

    Article  PubMed  CAS  Google Scholar 

  50. Vazquez-Cedeira M, Barcia-Sanjurjo I, Sanz-Garcia M, Barcia R, Lazo PA (2011) Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS One 6:e23235

    Article  PubMed  CAS  Google Scholar 

  51. Yin X, Zafrullah M, Lee H, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2009) A ceramide-binding C1 domain mediates kinase suppressor of Ras membrane. Cell Physiol Biochem 24:219–230

    Google Scholar 

Download references

Acknowledgments

I.F.F. has a JAE-CSIC predoctoral fellowship. This work was funded by grants from Ministerio de Ciencia e Innovación (SAF2010-14935 and CSD2007-0017), Junta de Castilla y León (Consejería de Educación CSI-006A11-2) and Kutxa-Fundación Inbiomed to P.A.L., and grant SAF2010-20203 from Ministerio de Ciencia e Innovación to J.L.

Conflict of interest

The authors declare they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Lazo.

Additional information

The protein interactions from this publication have been submitted to the EMBL-EBI IMEx (http://www.imexconsortium.org/) consortium through IntAct (pmid 22121220) and assigned the identifier IM-17102 for the VRK2–MEK1 interactions and the identifier IM-17103 for the VRK2–KSR1 interactions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 3766 kb)

Supplementary material 2 (EPS 2405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, I.F., Pérez-Rivas, L.G., Blanco, S. et al. VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cell. Mol. Life Sci. 69, 3881–3893 (2012). https://doi.org/10.1007/s00018-012-1056-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1056-8

Keywords

Navigation