Skip to main content
Log in

The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 26 January 2011

Abstract

Bacteria of the genus Shewanella contain an abundant small tetraheme cytochrome in their periplasm when growing anaerobically. Data collected for the protein isolated from S. oneidensis MR-1 and S. frigidimarina indicate differences in the order of oxidation of the hemes. A detailed thermodynamic characterization of the cytochrome from S. oneidensis MR-1 in the physiological pH range was performed, with data collected in the pH range 5.5–9.0 from NMR experiments using partially oxidized samples and from redox titrations followed by visible spectroscopy. These data allow the parsing of the redox and redox–protonation interactions that occur during the titration of hemes. The results show that electrostatic effects dominate the heme–heme interactions, in agreement with modest redox-linked structural modifications, and protonation has a considerable influence on the redox properties of the hemes in the physiological pH range. Theoretical calculations using the oxidized and reduced structures of this protein reveal that the bulk redox–Bohr effect arises from the aggregate fractional titration of several of the heme propionates. This detailed characterization of the thermodynamic properties of the cytochrome shows that only a few of the multiple microscopic redox states that the protein can access are significantly populated at physiological pH. On this basis a functional pathway for the redox activity of the small tetraheme cytochrome from S. oneidensis MR-1 is proposed, where reduction and protonation are thermodynamically coupled in the physiological range. The differences between the small tetraheme cytochromes from the two organisms are discussed in the context of their biological role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MC:

Monte Carlo

NOESY:

Nuclear Overhauser effect spectroscopy

SfSTC:

Small tetraheme cytochrome c from Shewanella frigidimarina NCIMB400

SoSTC:

Small tetraheme cytochrome c from Shewanella oneidensis MR-1

STC:

Small tetraheme cytochrome c

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Hau HH, Gralnick JA (2007) Annu Rev Microbiol 61:237–258

    Article  CAS  PubMed  Google Scholar 

  2. Croal LR, Gralnick JA, Malasarn D, Newman DK (2004) Annu Rev Genet 38:175–202

    Article  CAS  PubMed  Google Scholar 

  3. Meyer TE, Tsapin AI, Vandenberghe I, De Smet L, Frishman D, Nealson KH, Cusanovich MA, Van Beeumen JJ (2004) OMICS J Integr Biol 8:57–77

    Article  CAS  Google Scholar 

  4. Tsapin AI, Vandenberghe I, Nealson KH, Scott JH, Meyer TE, Cusanovich MA, Harada E, Kaizu T, Akutsu H, Leys D, Van Beeumen JJ (2001) Appl Environ Microbiol 67:3236–3244

    Article  CAS  PubMed  Google Scholar 

  5. Ross DE, Ruebush SS, Brantley SL, Hartshorne RS, Clarke TA, Richardson DJ, Tien M (2007) Appl Environ Microbiol 73:5797–5808

    Article  CAS  PubMed  Google Scholar 

  6. Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH (2007) Appl Environ Microbiol 73:7003–7012

    Article  CAS  PubMed  Google Scholar 

  7. Gordon EH, Pike AD, Hill AE, Cuthbertson PM, Chapman SK, Reid GA (2000) Biochem J 349:153–158

    Article  CAS  PubMed  Google Scholar 

  8. Leys D, Meyer TE, Tsapin AS, Nealson KH, Cusanovich MA, Van Beeumen JJ (2002) J Biol Chem 277:35703–35711

    Article  CAS  PubMed  Google Scholar 

  9. Harada E, Kumagai J, Ozawa K, Imabayashi S, Tsapin AS, Nealson KH, Meyer TE, Cusanovich MA, Akutsu H (2002) FEBS Lett 532:333–337

    Article  CAS  PubMed  Google Scholar 

  10. Firer-Sherwood M, Pulcu GS, Elliott SJ (2008) J Biol Inorg Chem 13:849–854

    Article  CAS  PubMed  Google Scholar 

  11. Louro RO, Pessanha M, Reid GA, Chapman SK, Turner DL, Salgueiro CA (2002) FEBS Lett 531:520–524

    Article  CAS  PubMed  Google Scholar 

  12. Pessanha M, Brennan L, Xavier AV, Cuthbertson PM, Reid GA, Chapman SK, Turner DL, Salgueiro CA (2001) FEBS Lett 489:8–13

    Article  CAS  PubMed  Google Scholar 

  13. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  14. Christensen HEM, Coutinho I, Conrad LS, Hammerstad-Pedersen JM, Iversen G, Jensen MH, Karlsson JJ, Ulstrup J, Xavier AV (1994) J Photochem Photobiol A Chem 82:103–115

    Article  CAS  Google Scholar 

  15. Louro RO (2007) J Biol Inorg Chem 12:1–10

    Article  CAS  PubMed  Google Scholar 

  16. Legall J, Payne WJ, Chen L, Liu MY, Xavier AV (1994) Biochimie 76:655–665

    Article  CAS  Google Scholar 

  17. Correia IJ, Paquete CM, Coelho A, Almeida CC, Catarino T, Louro RO, Frazao C, Saraiva LM, Carrondo MA, Turner DL, Xavier AV (2004) J Biol Chem 279:52227–52237

    Article  CAS  PubMed  Google Scholar 

  18. Paquete CM, Turner DL, Louro RO, Xavier AV, Catarino T (2007) Biochim Biophys Acta 1767:1169–1179

    Article  CAS  PubMed  Google Scholar 

  19. Delgado R, Dasilva JJRF, Amorim MTS, Cabral MF, Chaves S, Costa J (1991) Anal Chim Acta 245:271–282

    Article  CAS  Google Scholar 

  20. Keller R (2004) The computer aided resonance assignment tutorial. CANTINA, Goldau

    Google Scholar 

  21. Turner DL, Salgueiro CA, Catarino T, Legall J, Xavier AV (1996) Eur J Biochem 241:723–731

    Article  CAS  PubMed  Google Scholar 

  22. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) SIAM J Opt 9:112–147

    Article  Google Scholar 

  23. Louro RO, Correia IJ, Brennan L, Coutinho IB, Xavier AV, Turner DL (1998) J Am Chem Soc 120:13240–13247

    Article  CAS  Google Scholar 

  24. Turner DL (1995) Eur J Biochem 227:829–837

    Article  CAS  PubMed  Google Scholar 

  25. Baptista AM, Teixeira VH, Soares CM (2002) J Chem Phys 17:4184–4200

    Article  Google Scholar 

  26. Teixeira VH, Soares CM, Baptista AM (2002) J Biol Inorg Chem 7:200–216

    Article  CAS  PubMed  Google Scholar 

  27. Bashford D, Gerwert K (1992) J Mol Biol 224:473–486

    Article  CAS  PubMed  Google Scholar 

  28. Bashford D (1997) In: Ishikawa Y, Oldehoeft RR, Reynders JVW, Tholburn M (eds) Scientific computing in object-oriented parallel environments, ISCOPE97. Springer, Berlin, pp 233–240

  29. Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) J Phys Chem 103:3596–3607

    CAS  Google Scholar 

  30. van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. vdf, Zurich

    Google Scholar 

  31. Oliveira AS, Teixeira VH, Baptista AM, Soares CM (2005) Biophys J 89:3919–3930

    Article  PubMed  Google Scholar 

  32. Teixeira VH, Cunha CA, Machuqueiro M, Oliveira AS, Victor BL, Soares CM, Baptista AM (2005) J Phys Chem B 109:14691–14706

    Article  CAS  PubMed  Google Scholar 

  33. Salgueiro CA, Turner DL, Santos H, LeGall J, Xavier AV (1992) FEBS Lett 314:155–158

    Article  CAS  PubMed  Google Scholar 

  34. Santos H, Moura JJG, Moura I, Legall J, Xavier AV (1984) Eur J Biochem 141:283–296

    Article  CAS  PubMed  Google Scholar 

  35. Pessanha M, Louro RO, Correia IJ, Rothery EL, Pankhurst KL, Reid GA, Chapman SK, Turner DL, Salgueiro CA (2003) Biochem J 370:489–495

    Article  CAS  PubMed  Google Scholar 

  36. Dolla A, Blanchard L, Guerlesquin F, Bruschi M (1994) Biochimie 76:471–479

    Article  CAS  PubMed  Google Scholar 

  37. Louro RO, Catarino T, Paquete CM, Turner DL (2004) FEBS Lett 576:77–80

    Article  CAS  PubMed  Google Scholar 

  38. Perutz MF, Kilmartin JV, Nishikura K, Fogg JH, Butler PJ, Rollema HS (1980) J Mol Biol 138:649–668

    Article  CAS  PubMed  Google Scholar 

  39. Louro RO, Catarino T, LeGall J, Turner DL, Xavier AV (2001) ChemBioChem 2:831–837

    Article  CAS  PubMed  Google Scholar 

  40. Leys D, Tsapin AS, Nealson KH, Meyer TE, Cusanovich MA, Van Beeumen JJ (1999) Nat Struct Biol 6:1113–1117

    Article  CAS  PubMed  Google Scholar 

  41. Page CC, Moser CC, Chen X, Dutton PL (1999) Nature 402:47–52

    Article  CAS  PubMed  Google Scholar 

  42. Salgueiro CA, Morgado L, Fonseca B, Lamosa P, Catarino T, Turner DL, Louro RO (2005) FEBS J 272:2251–2260

    Article  CAS  PubMed  Google Scholar 

  43. Hoffman BM, Celis LM, Cull DA, Patel AD, Seifert JL, Wheeler KE, Wang J, Yao J, Kurnikov IV, Nocek JM (2005) Proc Natl Acad Sci USA 102:3564–3569

    Article  CAS  PubMed  Google Scholar 

  44. Gray HB, Winkler JR (2003) Q Rev Biophys 36:341–372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Graeme Reid (University of Edinburgh) for supplying S. oneidensis strain MR1A CS21a. We acknowledge CERMAX at ITQB and Rede Nacional de RMN for access to the facilities where NMR data were collected. Rede Nacional de RMN is supported by funds from FCT, Projecto de Re-Equipamento Científico, Portugal. This research was supported by the Fundação para a Ciência e Tecnologia (PPCDT/2004/BIA-PRO/58722 and PPCDT/QUI/60060/2004). B.M.F., I.H.S. and C.M.P. are the recipients of grants from Fundação para a Ciência e a Tecnologia [SFRH/BD/41205/2007 (B.M.F.); SFRH/BD/36582/2007 (I.H.S.); SFRH/BPD/34591/2007 (C.M.P.)]. While this manuscript was being evaluated a manuscript describing the NMR structure of soSTC was made available on the web: Paixao VB, Salgueiro CA, Brennan L, Reid GA, Chapman SK, Turner DL, Biochemistry DOI 10.1021/bi801326j.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo O. Louro.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00775-011-0759-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, B.M., Saraiva, I.H., Paquete, C.M. et al. The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes. J Biol Inorg Chem 14, 375–385 (2009). https://doi.org/10.1007/s00775-008-0455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0455-7

Keywords

Navigation