Skip to main content
Log in

Modeling the interplay of glycine protonation and multiple histidine binding of copper in the prion protein octarepeat subdomains

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The octarepeat region of the prion protein can bind Cu2+ ions up to full occupancy (one ion per octarepeat) at neutral pH. While crystallographic data show that the HGGG octarepeat subdomain is the basic binding unit, multiple histidine coordination at lower Cu occupancy has been reported by X-ray absorption spectroscopy, EPR, and potentiometric experiments. In this paper we investigate, with first principles Car–Parrinello simulations, the first step for the formation of the Cu low-level binding mode, where four histidine side chains are coordinated to the same Cu2+ ion. This step involves the further binding of a second histidine to an already HGGG domain bonded Cu2+ ion. The influence of the pH on the ability of Cu to bind two histidine side chains was taken into account by simulating different protonation states of the amide N atoms of the two glycines lying nearest to the first histidine. Multiple histidine coordination is also seen to occur when glycine deprotonation occurs and the presence of the extra histidine stabilizes the Cu–peptide complex. Though the stabilization effect slightly decreases with the number of deprotonated glycines (reaching a minimum when both N atoms of the two nearest glycines are available as Cu ligands), the system is still capable of binding the second histidine in a 4N tetrahedral (though slightly distorted) coordination, whose energy is very near to that of the crystallographic square-planar 3N1O coordination. This result suggests that at low metal concentration the reorganization energy associated with Cu(II)/Cu(I) reduction is small also at pH ~ 7, when glycines are deprotonated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Actually the Makov–Payne correction also applies to systems with a nonvanishing dipole moment, irrespective of their charge. For the systems of interest here, this bit of the correction is, however, very small.

References

  1. Prusiner SB (1982) Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner SB (1998) Nobel Lect 74–129

  3. Prusiner SB (1998) Proc Natl Acad Sci USA 95:13363–13383

    Article  CAS  PubMed  Google Scholar 

  4. Gasset M, Baldwin MA, Fletterick RJ, Prusiner SB (1993) Proc Natl Acad Sci USA 90:1–5

    Article  CAS  PubMed  Google Scholar 

  5. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB (1993) Proc Natl Acad Sci USA 90:10962–10966

    Article  CAS  PubMed  Google Scholar 

  6. Dominikus AL, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Güntert P, Wüthrich K (2005) Proc Natl Acad Sci USA 102:640–645

    Article  Google Scholar 

  7. McKinley MP, Meyer RK, Kenaga L, Rahbar F, Serban RCA, Prusiner SB (1991) J Virol 65:1340–1351

    CAS  PubMed  Google Scholar 

  8. Chiesa R, Drisaldi B, Quaglio E, Migheli A, Piccardo P, Ghetti B, Harris DA (2000) Proc Natl Acad Sci USA 97:5574–5579

    Article  CAS  PubMed  Google Scholar 

  9. Nunziante M, Gilch S, Schatzl HM (2003) J Biol Chem 278:3726–3734

    Article  CAS  PubMed  Google Scholar 

  10. Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Tréguer E, Rezaei H, Knossow M (2004) Proc Natl Acad Sci USA 101:10254–10259

    Article  CAS  PubMed  Google Scholar 

  11. Stockel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998) Biochemistry 37:7185–7193

    Article  CAS  PubMed  Google Scholar 

  12. Miura T, Hori-i A, Mototani H, Takeuchi H (1999) Biochemistry 38:11560–11569

    Article  CAS  PubMed  Google Scholar 

  13. Jackson GS, Murray I, Hosszu LLP, Gibbs N, Waltho JP, Clarke AR, Colling J (2001) Proc Natl Acad Sci USA 98:8531–8535

    Article  CAS  PubMed  Google Scholar 

  14. Rachidi W, Mange A, Senator A, Guiraud P, Riondel J, Benboubetra M, Favier A, Lehmann S (2003) J Biol Chem 278:14595–14598

    Article  CAS  PubMed  Google Scholar 

  15. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Chem Rev 106:1995–2044

    Article  CAS  PubMed  Google Scholar 

  16. Hornshaw MP, McDermott JR, Candy JM, Lakey JH (1995) Biochem Biophys Res Commun 214:993–999

    Article  CAS  PubMed  Google Scholar 

  17. Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Protein Sci 9:332–343

    Article  CAS  PubMed  Google Scholar 

  18. Wells MA, Jelinska C, Hosszu LLP, Craven CJ, Clarke AR, Collinge J, Waltho J, Jackson G (2006) Biochem J 400:501–510

    Article  CAS  PubMed  Google Scholar 

  19. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Biochemistry 41:3991–4001

    Article  CAS  PubMed  Google Scholar 

  20. Qin K, Yang Y, Mastrangelo P, Westaway D (2002) J Biol Chem 277:1981–1990

    Article  CAS  PubMed  Google Scholar 

  21. Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ (1999) Proc Natl Acad Sci USA 96:2042–2047

    Article  CAS  PubMed  Google Scholar 

  22. Kramer ML, Kratzin HD, Schmidt B, Windl ARO, Liemann S, Hornemann S, Kretzschmar H (2001) J Biol Chem 276:16711–16719

    Article  CAS  PubMed  Google Scholar 

  23. Garnett AP, Viles JH (2003) J Biol Chem 278:6795–6802

    Article  CAS  PubMed  Google Scholar 

  24. Kozlowski H, Janicka-Klos A, Stanczak P, Valensin D, Valensin G, Kulon K (2008) Coord Chem Rev 252:1069–1078

    Article  CAS  Google Scholar 

  25. Hasnain SS, Murphy LM, Grossmann RWSJG, Clarke AR, Jackson GS, Collinge J (2001) J Mol Biol 311:467–473

    Article  CAS  PubMed  Google Scholar 

  26. Cereghetti GM, Schweiger A, Glockshuber R, van Doorslaer S (2001) J Biophys 81:516–525

    Article  CAS  Google Scholar 

  27. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Biochemistry 42:6794–6803

    Article  CAS  PubMed  Google Scholar 

  28. Morante S, Gonzalez-Iglesias R, Potrich C, Meneghini C, Meyer-Klaucke W, Menestrina G, Gasset M (2004) J Biol Chem 279:11753–11759

    Article  CAS  PubMed  Google Scholar 

  29. Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) J Am Chem Soc 127:12647–12656

    Article  CAS  PubMed  Google Scholar 

  30. Valensin D, Luczkowski FM, Mancini A, Gaggelli ELE, Valensin G, Rolka K, Kozlowski H (2004) Dalton Trans 1284–1293

  31. Stanczak P, Kozlowski H (2007) Biochem Biophys Res Comm 352:198–202

    Article  CAS  PubMed  Google Scholar 

  32. Pradines V, Stroia AJ, Faller P (2008) New J Chem 32:1189

    Article  CAS  Google Scholar 

  33. Sigel H, Martin RB (1982) Chem Rev 82:385–426

    Article  CAS  Google Scholar 

  34. Furlan S, La Penna G, Guerrieri F, Morante S, Rossi GC (2007) J Biol Inorg Chem 12:571–583

    Article  CAS  PubMed  Google Scholar 

  35. Baroni S, Dal Corso A, de Gironcoli S, Giannozzi P, Cavazzoni C, Ballabio G, Scandolo S, Chiarotti G, Focher P, Pasquarello A, Laasonen K, Trave A, Car R, Marzari N, Kokalj A (2008) Quantum ESPRESSO. http://www.quantum-espresso.org

  36. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  38. Nosé S (1984) Mol Phys 52:255–268

    Article  Google Scholar 

  39. Frenkel D, Smit B (1996) Understanding molecular simulation. Academic Press, San Diego

    Google Scholar 

  40. Giannozzi P, De Angelis F, Car R (2004) J Chem Phys 120:5903–5915

    Article  CAS  PubMed  Google Scholar 

  41. La Penna G (2003) J Chem Phys 119:8162–8174

    Article  CAS  Google Scholar 

  42. Muegge I, Qui PX, Wand AJ, Chu ZT, Warshel A (1997) J Phys Chem B 101:825–836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Giannozzi and C. Cavazzoni for invaluable suggestions and constant help. The computations were performed on Linux clusters at the E. Fermi Research Center (Rome, Italy), at the BEN facility of the ECT* Institute (Trento, Italy), at Cineca (Bologna, Italy), and on locally assembled hardware. Financial support from Firb 2003 projects RBNE03PX83, PRIN05, and PRIN06 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni La Penna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary tables (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrieri, F., Minicozzi, V., Morante, S. et al. Modeling the interplay of glycine protonation and multiple histidine binding of copper in the prion protein octarepeat subdomains. J Biol Inorg Chem 14, 361–374 (2009). https://doi.org/10.1007/s00775-008-0454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0454-8

Keywords

Navigation