Skip to main content

Advertisement

Log in

On the generation of OH· radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

According to different studies, the interaction between amyloid β-peptide (Aβ) and copper ions could yield radical oxygen species production, in particular the highly toxic hydroxyl radical OH· that is suspected to contribute to Alzheimer’s disease pathogenesis. Despite intensive experimental and computational studies, the nature of the interaction between copper and Aβ peptide, as well as the redox reactivity of the system, are still matter of debate. It was proposed that in Cu(II) → Cu(I) reduction the complex Cu(II)–Aβ could follow a multi-step conformational change with redox active intermediates that may be responsible for OH· radical production from H2O2 through a Fenton-like process. The purpose of this work is to evaluate, using ab initio Density Functional Theory computations, the reactivity of different Cu(I)–Aβ coordination modes proposed in the literature, in terms of OH· production. For each coordination model, we considered the corresponding H2O2 adduct and performed a potential energy surface scan along the reaction coordinate of O–O bond dissociation of the peroxide, resulting in the production of OH· radical, obtaining reaction profiles for the evaluation of the energetic of the process. This procedure allowed us to confirm the hypothesis according to which the most populated Cu(I)–Aβ two-histidine coordination is not able to perform efficiently H2O2 reduction, while a less populated three-coordinated form would be responsible for the OH· production. We show that coordination modes featuring a third nitrogen containing electron-donor ligand (an imidazole ring of an histidine residue is slightly favored over the N-terminal amine group) are more active towards H2O2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 5
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sosa-Ortiz AL, Acosta-Castillo I, Princeb M (2012) Arch Med Res 43:600–608

    Article  PubMed  Google Scholar 

  2. Barnham KJ, Master CL, Bush AI (2004) Nat Rev 3:205–214

    CAS  Google Scholar 

  3. Kepp KP (2012) Chem Rev 112:5193–5239

    Article  CAS  PubMed  Google Scholar 

  4. Greenough MA, Camakaris J, Bush AI (2013) Neurochem Int 62:540–555

    Article  CAS  PubMed  Google Scholar 

  5. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Coord Chem Rev 256:2129–2141

    Article  CAS  Google Scholar 

  6. Faller P, Hureau C (2009) Dalton Trans 7:1080–1094

    Article  PubMed  Google Scholar 

  7. Sarell CJ, Syme CD, Rigby SEJ, Viles JH (2009) Biochemistry 48:4388–4402

    Article  CAS  PubMed  Google Scholar 

  8. Atwood CS, Huang X, Moir RD, Tanzi RE, Bush AI (1999) Met Ions Biol Syst 36:309–364

    CAS  PubMed  Google Scholar 

  9. Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G, Carey PR (2013) Biochemistry 42:2768–2773

    Article  Google Scholar 

  10. Lu J, Qiang W, Yau W, Schwieters CD, Meredith SC, Tycko R (2013) Cell 154:1257–1268

    Article  CAS  PubMed  Google Scholar 

  11. Gunderson WA, Hernández-Guzmán J, Karr JW, Sun L, Szalai VA, Warncke K (2012) J Am Chem Soc 134:18330–18337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang D, Zhang L, Grant GP, Dudzik CG, Chen S, Patel S, Hao Y, Millhauser GL, Zhou F (2013) Biochemistry 52:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hane F, Tran G, Attwood SJ, Leonenko Z (2013) PLoS One 8:59005

    Article  Google Scholar 

  14. Atwood CS, Moir RD, Huang X, Bacarra NME, Scarpa RC, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) J Biol Chem 273:12817–12826

    Article  CAS  PubMed  Google Scholar 

  15. Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI (2002) J Biol Chem 277:40302–40308

    Article  CAS  PubMed  Google Scholar 

  16. Smith DG, Cappai R, Barnham KJ (2007) Biochim Biophys Acta 1768:1976–1990

    Article  CAS  PubMed  Google Scholar 

  17. Hureau C, Dorlet P (2012) Chem Coord Rev 256:2175–2187

    Article  CAS  Google Scholar 

  18. Nadal RC, Rigby SE, Viles JH (2008) Biochemistry 47:11653–11664

    Article  CAS  PubMed  Google Scholar 

  19. Hureau C, Faller P (2009) Biochimie 91:1212–1217

    Article  CAS  PubMed  Google Scholar 

  20. Mayes J, Tinker-Mill C, Kolosov O, Zhang H, Tabner NJ, Allsop D (2014) J Biol Chem 289:12052–12062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parthasarathy S, Yoo B, McElheny D, Tay W, Ishii Y (2014) J Biol Chem 289:9998–10010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guilloreau L, Combalbert S, Sournia-Saquet A, Marzaguil H, Faller P (2007) Chem Bio Chem 8:1317

    Article  CAS  PubMed  Google Scholar 

  23. Trujano-Ortiz LG, Gonzales FJ, Quintanar L (2015) Inorg Chem 54:4–6

    Article  CAS  PubMed  Google Scholar 

  24. Clementi ME, Martorana GE, Pezzotti M, Giardina B, Misiti F (2004) Int J Biochem Cell Biol 36:2066–2076

    Article  CAS  PubMed  Google Scholar 

  25. Butterfield DA, Bush AI (2004) Neurobiol Aging 25:563–568

    Article  CAS  PubMed  Google Scholar 

  26. Silva GFZ, Lykourinou V, Angerhofer A, Ming L (2009) Biochim Biophys Acta 1792:49–55

    Article  PubMed  Google Scholar 

  27. Balland V, Hureau C, Savéant JM (2010) Proc Natl Acad Sci 107:17113–17118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cassagnes LE, Hervé V, Nepveu F, Hureau C, Faller P, Collin F (2013) Angew Chem Int Ed 52:11110–11113

    Article  CAS  Google Scholar 

  29. Dorlet P, Gambarelli S, Faller P, Hureau C (2009) Angew Chem Int Ed 48:9273–9276

    Article  CAS  Google Scholar 

  30. Alí-Torres J, Marechal JD, Rodríguez-Santiago L, Sodupe M (2011) J Am Chem Soc 133:15008–15014

    Article  PubMed  Google Scholar 

  31. Migliorini C, Porciatti E, Luczkowski M, Valensin D (2012) Coord Chem Rev 256:352–368

    Article  CAS  Google Scholar 

  32. El Khoury Y, Dorlet P, Faller P, Hellwig P (2011) J Phys Chem B 115:14812–14821

    Article  PubMed  Google Scholar 

  33. Himes RA, Park GY, Siluvai GS, Blackburn NJ, Karlin KD (2008) Angew Chem Int Ed 47:9084–9087

    Article  CAS  Google Scholar 

  34. Lu Y, Prudent M, Qiao L, Mendez MA, Girault HH (2010) Metallomics 2:474–479

    Article  CAS  PubMed  Google Scholar 

  35. Furlan S, Hureau C, Faller P, La Penna G (2010) J Phys Chem B 114:15119–15133

    Article  CAS  PubMed  Google Scholar 

  36. Alí-Torres J, Mirats A, Maréchal J, Rodríguez-Santiago L, Sodupe M (2014) J Phys Chem B 118:4840–4850

    Article  PubMed  Google Scholar 

  37. Shearer J, Szalai VA (2008) J Am Chem Soc 130:17826–17835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hewitt N, Rauk A (2009) J Phys Chem B 113:1202–1209

    Article  CAS  PubMed  Google Scholar 

  39. Raffa DF, Rickard GA, Rauk A (2007) J Biol Inorg Chem 12:147–164

    Article  CAS  PubMed  Google Scholar 

  40. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete N, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P (2015) Chem Rev 115(9):3518–3563

    Article  CAS  PubMed  Google Scholar 

  41. La Penna G, Hureau C, Andreussi O, Faller P (2013) J Phys Chem B 117:16455–16467

    Article  PubMed  Google Scholar 

  42. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  43. Becke AD (1998) Phys Rev A 38:3098–3100

    Article  Google Scholar 

  44. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  45. Eichkorn, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  46. Schafer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  47. Klamt A (1995) J Phys Chem A 99:2224–2235

    Article  CAS  Google Scholar 

  48. Klamt A (1996) J Phys Chem A 100:3349–3353

    Article  CAS  Google Scholar 

  49. Klamt A, Schüürmann G (1993) J Chem Soc 2:799–805

    Google Scholar 

  50. Bertini L, Bruschi M, Romaniello M, Zampella G, Tiberti M, Barbieri V, Greco C, La Mendola D, Bonomo R, Fantucci P, De Gioia L (2012) Theor Chem Acc 131:1186

    Article  Google Scholar 

  51. Macchi P, Sironi A (2003) Coord Chem Rev 238(239):383–412

    Article  Google Scholar 

  52. Matito E, Solà M (2009) Coord Chem Rev 253:647–655

    Article  CAS  Google Scholar 

  53. Beigler-Konig FW, Bader RWF, Tang HT (1982) J Comput Chen 3:317–328

    Article  Google Scholar 

  54. Gatti C SF_ESI Code, private comunication

  55. Solomon EI, Ginsbach JW, Heppner DE, Kieber-Emmons MT, Kjaergaard CH, Smeets PJ, Tian L, Woertink JS (2011) Faraday Discuss 148:11–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trojer MA, Movahedi A, Blanck H, Nydén M (2013) J Chem 946739

  57. Sundberg RJ, Martin RB (1974) Chem Rev 74:471–517

    Article  CAS  Google Scholar 

  58. The sum of the two δ(Cu,O) delocalization indexes is 0.070 electron pairs compared to 0.549 in 2H 2 O

  59. Bk Shin, Saxena S (2008) Biochemistry 47:9117–9123

    Article  Google Scholar 

  60. Hureau C, Balland V, Coppel Y, Solari P, Fonda E, Faller P (2009) J Biol Inorg Chem 14:995–1000

    Article  CAS  PubMed  Google Scholar 

  61. Himes RA, Park GY, Barry AN, Blackburn NJ, Karlin KD (2007) J Am Chem Soc 129:5352–5353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a PRIN project 2010M2ARJ_010 of the Italian MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bertini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2015_1322_MOESM1_ESM.pdf

In the SI are reported i) details of the electronic structure of 2H 2 O model (QTAIM analysis, MO diagrams); ii) details of the computational method adopted iii) pictures of the van der Waals adducts, of the His 2 -H 2 O model and of the His 2 -NH 2 PES scan; iv) the atomic coordinates of all S = 0 η1 adduct and η2 S = 0 products (PDF 1069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosdocimi, T., De Gioia, L., Zampella, G. et al. On the generation of OH· radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation. J Biol Inorg Chem 21, 197–212 (2016). https://doi.org/10.1007/s00775-015-1322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1322-y

Keywords

Navigation