Skip to main content
Log in

The role of trace elements in the pathogenesis and progress of pilocarpine-induced epileptic seizures

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

X-ray fluorescence microscopy was applied for topographic and quantitative elemental analysis within the areas of the rat brain that undergo neurodegenerative changes in consequence of pilocarpine-induced seizures. Significant changes in levels of selected elements were observed in epileptic animals. They included an increased tissue content of Ca in the CA1 and CA3 regions of the hippocampus and in the cerebral cortex. The opposite relation was observed for the Cu level in the dentate gyrus and for Zn in the CA3 region of the hippocampus and in the dentate gyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamed SA, Abdellah MM (2004) Blood levels of trace elements, electrolytes, and oxidative stress/antioxidant systems in epileptic patients. J Pharmacol Sci 96:349–359

    Article  PubMed  CAS  Google Scholar 

  2. Lynes MA, Kang YJ, Sensi SL et al (2007) Heavy metal ions in normal physiology, toxic stress, and cytoprotection. Ann N Y Acad Sci 1113:159–172

    Article  PubMed  CAS  Google Scholar 

  3. Fraga CG (2005) Relevance, essentially and toxicity of trace elements in human health. Mol Aspects Med 26:235–244

    Article  PubMed  CAS  Google Scholar 

  4. Formigari A, Irato P, Santon A (2007) Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 146:443–459

    Article  PubMed  CAS  Google Scholar 

  5. Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191

    Article  PubMed  CAS  Google Scholar 

  6. Sayre LM, Perry G, Smith MA (1999) Redox metals and neurodegenerative disease. Curr Opin Chem Biol 3:220–225

    Article  PubMed  CAS  Google Scholar 

  7. Campbell A, Smith MA, Sayre LM et al (2001) Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res Bull 55:125–132

    Article  PubMed  CAS  Google Scholar 

  8. Hamed SA, Abdellah MM (2004) Trace elements and electrolytes homeostasis and their relation to antioxidant enzyme activity in brain hyperexcitability of epileptic patients. J Pharm Sci 96:349–359

    Article  CAS  Google Scholar 

  9. Papavasiliou PS, Miller ST (1983) Generalized seizures alter the cerebral and peripheral metabolism of essential metals in mice. Exp Neurol 82:223–236

    Article  PubMed  CAS  Google Scholar 

  10. Carl GF, Critchfield JW, Thompson JL et al (1989) Effect of kainate-induced seizures on tissue trace element concentrations in the rat. Neuroscience 33:223–227

    Article  PubMed  CAS  Google Scholar 

  11. Carl GF, Critchfield JW, Thompson JL et al (1990) Genetically epilepsy-prone rats are characterized by altered tissue trace element concentrations. Epilepsia 31:247–252

    Article  PubMed  CAS  Google Scholar 

  12. Hirate M, Takeda A, Tamano H et al (2002) Distribution of trace elements in the brain of EL (epilepsy) mice. Epilepsy Res 51:109–116

    Article  PubMed  CAS  Google Scholar 

  13. Setkowicz Z, Janeczko K (2003) Long-term changes in susceptibility to pilocarpine-induced status epilepticus following neocortical injuries in the rat at different developmental stages. Epilepsy Res 53:216–224

    Article  PubMed  Google Scholar 

  14. Setkowicz Z, Nowak B, Janeczko K (2006) Neocortical injuries at different developmental stages determine different susceptibility to seizures induced in adulthood. Epilepsy Res 68:255–263

    Article  PubMed  Google Scholar 

  15. Turski L, Cavalheiro EA, Czuczwar SJ et al (1987) The seizures induced by pilocarpine: behavioral, electroencephalographic and neuropathological studies in rodents. Pol J Pharmacol Pharm 39:545–555

    PubMed  CAS  Google Scholar 

  16. Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW (2007) Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 35:984–999

    Article  PubMed  Google Scholar 

  17. Janssens KH, Rindby A, Adams F (2000) Microscopic X-ray fluorescence analysis. Wiley, Chichester

    Google Scholar 

  18. Szczerbowska-Boruchowska M, Lankosz M, Ostachowicz J et al (2004) Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation. X-ray Spectrom 33:3–11

    Article  CAS  Google Scholar 

  19. Tomik B, Chwiej J, Szczerbowska-Boruchowska M et al (2006) Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in amyotrophic lateral sclerosis. Neurochem Res 4:321–331

    Article  CAS  Google Scholar 

  20. Snigireva I, Snigirev A (2006) X-ray microanalytical techniques based on synchrotron radiation. J Environ Monit 8:33–42

    Article  PubMed  CAS  Google Scholar 

  21. Setkowicz Z, Mazur A (2006) Physical training decreases susceptibility to subsequent pilocarpine-induced seizures in the rat. Epilepsy Res 71:142–148

    Article  PubMed  Google Scholar 

  22. Setkowicz Z, Ciarach M (2007) Neuroprotectants FK-506 and cyclosporin A ameliorate the course of pilocarpine-induced seizures. Epilepsy Res 73:151–155

    Article  PubMed  CAS  Google Scholar 

  23. Paxinos G, Watson C (1989) The rat brain in stereotaxic coordinates. Academic Press, Australia

    Google Scholar 

  24. Falkenberg G, Clauss O, Tschentscher T (2001) X-ray optics for the microfocus beamline L. In: HASYLAB annual report 2001. Available at http://hasyweb.desy.de/science/annual_reports/2001_report/part1/intern/5720.pdf

  25. Vekemans B, Vincze L, Somogyi A, Drakopoulos M, Kempenaers L, Simionovici A, Adams F (2003) Quantitative X-ray fluorescence analysis at the ESRF ID18F microprobe. Nucl Instrum Methods B 199:396–401

    Article  CAS  Google Scholar 

  26. Currie LA (1968) Limits of qualitative detection and quantitative determination. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  27. Takeda A, Hanajima T, Ijiro H et al (1999) Release of zinc from the brain of El (epilepsy) mice during seizure induction. Brain Res 828:174–178

    Article  PubMed  CAS  Google Scholar 

  28. Takeda A, Hirate M, Tamano H et al (2003) Susceptibility to kainate-induced seizures under dietary zinc deficiency. J Neurochem 85:1575–1580

    Article  PubMed  CAS  Google Scholar 

  29. Takeda A, Tamano H, Nagayoshi A et al (2005) Increase in hippocampal cell death after treatment with kainate in zinc deficiency. Neurochem Int 47:539–544

    Article  PubMed  CAS  Google Scholar 

  30. Ren MQ, Ong WY, Makjanic J et al (1999) Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy. Nucl Instrum Methods B 158:418–423

    Article  CAS  Google Scholar 

  31. Lankosz M, Holynska B, Pella PA (1993) Experimental verification of a Monte Carlo method for X-ray microfluorescence analysis of small particles. X-ray Spectrom 22:54–57

    Article  CAS  Google Scholar 

  32. Pillay AE (2001) Analysis of archaeological artefacts: PIXE, XRF or ICP-MS? J Radioanal Nucl Chem 247:593–595

    Article  CAS  Google Scholar 

  33. Ali M (2004) PIXE and RIXRF comparison for applications to biological sample analysis. Nucl Instrum Methods B 222:567–576

    Article  CAS  Google Scholar 

  34. Glass M, Dragunow M (1995) Neurochemical and morphological changes associated with human epilepsy. Brain Res Rev 21:29–41

    Article  PubMed  CAS  Google Scholar 

  35. Siesjö BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140

    PubMed  Google Scholar 

  36. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337

    Article  PubMed  CAS  Google Scholar 

  37. Chwiej J, Szczerbowska-Boruchowska M, Lankosz M et al (2005) Preparation of tissue samples for X-ray fluorescence microscopy. Spectrochim Acta B 60:1531–1537

    Article  CAS  Google Scholar 

  38. Parkin G (2004) Chemistry. Zinc–zinc bonds: a new frontier. Science 305:1117–1118

    Article  PubMed  CAS  Google Scholar 

  39. Williamson A, Spencer D (1995) Zinc reduces dentate granule cell hyperexcitability in epileptic humans. Neuroreport 6:1562–1564

    Article  PubMed  CAS  Google Scholar 

  40. Pei Y, Zhao D, Huang J, Cao L (1983) Zinc-induced seizures: a new experimental model of epilepsy. Epilepsy 24:169–176

    Article  CAS  Google Scholar 

  41. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10:2–9

    Article  CAS  Google Scholar 

  42. Vogt K, Mellor J, Tong G et al (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    Article  PubMed  CAS  Google Scholar 

  43. Leite JP, Garcia-Cairasco N, Cavalheiro EA (2002) New insights from the use of pilocarpine and kainate models. Epilepsy Res 50:93–103

    Article  PubMed  CAS  Google Scholar 

  44. Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  PubMed  CAS  Google Scholar 

  45. Sahin D, Ilbay G, Ates N (2003) Changes in the blood–brain barrier permeability and in the brain tissue trace element concentrations after single and repeated pentylenetetrazole-induced seizures in rats. Pharmacol Res 48:69–73

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish Ministry of Science and Higher Education and the following grants: IA-SFS/94/2007, N303 052 31/1626, RII3-CT-2004-506008 (IA-SFS), and DESY-D-I-20070053 EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chwiej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chwiej, J., Winiarski, W., Ciarach, M. et al. The role of trace elements in the pathogenesis and progress of pilocarpine-induced epileptic seizures. J Biol Inorg Chem 13, 1267–1274 (2008). https://doi.org/10.1007/s00775-008-0411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0411-6

Keywords

Navigation