Skip to main content
Log in

Implementation of X-ray Fluorescence Microscopy for Investigation of Elemental Abnormalities in Amyotrophic Lateral Sclerosis

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The abnormalities of metallochemical reactions may contribute to the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). In the present work, an investigation of the elemental composition of the gray matter, nerve cells and white matter from spinal cord tissues representing three ALS cases and five non-ALS controls was performed. This was done with the use of the synchrotron microbeam X-ray fluorescence technique (micro-SRXRF). The following elements were detected in the tissue sections: P, S, Cl, K, Ca, Fe, Cu, Zn and Br. A higher accumulation of Cl, K, Ca, Zn and Br was observed in the nerve cell bodies than in the surrounding tissue. Contrary to all other elements, Zn accumulation was lower in the white matter areas than in the gray matter ones. The results of quantitative analysis showed that there were no general abnormalities in the elemental accumulation between the ALS and the control group. However, for individual ALS cases such abnormalities were observed for the nerve cells. We also demonstrated differences in the elemental accumulation between the analyzed ALS cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Menzies FM, Ince PG, Shaw PJ (2002) Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem Int 40:543–551

    Article  PubMed  CAS  Google Scholar 

  2. Cassarino DS, Bennett JP (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev 29:1–25

    Article  PubMed  CAS  Google Scholar 

  3. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev 25:335–358

    Article  PubMed  CAS  Google Scholar 

  4. Carri MT, Ferri A, Cozzolino M, Calabrese L, Rotilio G (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 61:365–374

    Article  PubMed  CAS  Google Scholar 

  5. Carri MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G (1997) Exspression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 414:365–368

    Article  PubMed  CAS  Google Scholar 

  6. Kruman II, Pedersen WA, Springer JE, Mattson MP (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanisms involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160:28–39

    Article  PubMed  CAS  Google Scholar 

  7. Orrell RW (2000) Amyotrophic lateral sclerosis: copper/zinc superoxide dismutase (SOD1) gene mutations. Neuromuscular Dis 10:63–68

    Article  CAS  Google Scholar 

  8. Mitchell JD (2000) Amyotrophic lateral sclerosis: toxins and environment Amyotroph. Lateral Scler Other Motor Neuron Disord 1(4):235–250

    Article  CAS  Google Scholar 

  9. Campbell A, Smith MA, Sayre LM, Bondy SC, Perry G (2001) Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res Bull 55/2:125–132

    Article  Google Scholar 

  10. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  11. Bush AI (2000) Metals and neuroscience. Curr Op Chem Biol 4:184–191

    Article  CAS  Google Scholar 

  12. Hasnain SS (2004) Synchrotron techniques for metalloproteins and human disease in post genome era. J Synchrotron Radit 1:7–11

    Article  CAS  Google Scholar 

  13. Carri MT, Battistoni A, Ferri A (1994) A study of the dual role of copper in superoxide dismutase as antioxidant and pro-oxidant in cellular models of amyotrophic lateral sclerosis. Adv Exp Med Biol 448:205–213

    Google Scholar 

  14. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700

    Article  PubMed  CAS  Google Scholar 

  15. Iida A (2000) Instrumentation for μ-XRF at synchrotron sources. In: Janssens KHA, Adams FCV, Rindby A (eds), Microscopic X-Ray Fluorescence Analysis, John Wiley, Chichester, pp 117–153

    Google Scholar 

  16. Bohic S, Simionovici A, Ortega R, Heymann D, Schroer C, Snigirev A (2001) Synchrotron-induced X-ray microfluorescence on single cells. Nucl Instr Meth B 181(1):728–733(6)

    Article  CAS  Google Scholar 

  17. Huang YY, Lu JX, He RG, Zhao LM, Wang ZG, He W, Zhang YX (2001) Study of human bone tumor slice by SRXRF microprobe. Nucl Instrum Meth Phys Res A 467–468:1301–1304

    Article  Google Scholar 

  18. Ortega R, Deves G, Fayard B, Salome M, Susini J (2003) Combination of synchrotron radiation X-ray microprobe and nuclear microprobe for chromium and chromium oxidation states quantitative mapping in single cells. Nucl Instrum Meth Phys Res B 210:325–329

    Article  CAS  Google Scholar 

  19. Szczerbowska-Boruchowska M, Lankosz M, Ostachowicz J, Adamek D, Krygowska-Wajs A, Tomik B, Szczudlik A, Simionovici A, Bohic S (2004) Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation. X-ray Spectrom 33(1):3–11

    Article  CAS  Google Scholar 

  20. Yoshida S, Ektessabi A, Fujisawa S (2001) XAFS spectroscopy of a single neuron from a patient with Parkinson’s disease. J Synchrotron Radiat 8:998–1000

    Article  PubMed  CAS  Google Scholar 

  21. Ide-Ektessabi A, Kawakami T, Watt F (2004) Distribution and chemical state analysis of iron in the Parkinsonian substantia nigra using synchrotron radiation micro beams. Nucl Instrum Meth Phys Res B 213:590–594

    Article  CAS  Google Scholar 

  22. Ishihara R, Ide-Ektessabi A, Ikeda K, Mizuno Y, Fujisawa S, Takeuchi T, Ohta T (2002) Investigation of cellular metallic elements in single neurons of human brain tissues. Neuroreport 13(14):1817–1820

    Article  PubMed  CAS  Google Scholar 

  23. Chwiej J, Szczerbowska-Boruchowska M, Wojcik S, Lankosz M, Chlebda M, Adamek D, Tomik B, Setkowicz Z, Falkenberg G, Stegowski Z, Szczudlik A (2005) Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in central nervous system tissue. J Alloy Compd 401(1–2):184–188

    Article  CAS  Google Scholar 

  24. Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl.):96–107

    Article  PubMed  Google Scholar 

  25. Falkenberg G, Rickers K (2002) Pink-beam and monochromatic micro-X-ray fluorescence analysis at the beamline L. In: Krell U, Schneider JR, von Zimmerman M (Eds) Hasylab Annual Report 2002 Part I, HASYLAB at DESY, Hamburg, pp 88–95

    Google Scholar 

  26. Simionovici AS, Chukalina M, Schroer CG, Drakopoulos M, Snigirev AA, Snigireva II, Lengeler B, Janssens K, Adams F (2000) High-resolution X-ray fluorescence microtomography of homogeneous samples. IEEE Trans Nucl Sci 47:2736–2740

    Article  Google Scholar 

  27. Bilderback DH, Hoffman SA, Thiel DJ (1994) Nanometer spatial-resolution achieved in hard X-ray-imaging and Laue diffraction experiments. Science 263:201–203

    Article  PubMed  CAS  Google Scholar 

  28. Lengeler B, Schroer CG, Tuemmler J, Benner B, Richwin M, Snigirev A, Snigireva I, Drakopoulos M (1999) Imaging by parabolic refractive lenses in the hard X-ray range. J Synchrotron Radiat 6:1153–1167

    Article  Google Scholar 

  29. Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  30. Kapaki E, Zournas C, Kanias G, Zambelis T, Kakami A, Papageorgiou C (1997) Essential trace element alterations in amyotrophic lateral sclerosis. J Neurol Sci 147(2):171–175

    Article  PubMed  CAS  Google Scholar 

  31. Lin DD, Cohen AS, Coulter DA (2001) Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons. J Neurophysiol 85(3):1185–1196

    PubMed  CAS  Google Scholar 

  32. Choi DW, Koh JY (1998) Zinc and brain injury. Ann Rev Neurosci 21:347–375

    Article  PubMed  CAS  Google Scholar 

  33. Frederickson CJ, Koh JY, Bush AJ (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  PubMed  CAS  Google Scholar 

  34. Eom SJ, Kim EY, Lee JE, Kang HJ, Shim J, Kim SU, Gwag BJ, Choi EJ (2001) Zn(2+) induces stimulation of the c-Jun N-terminal kinase signaling pathway through phosphoinositide 3-Kinase. Mol Pharmacol 59(5):981–986

    PubMed  CAS  Google Scholar 

  35. Mann DMA, Yates PO (1974) Lipoprotein pigments – their relationship to ageing in the human nervous system II. The melanin content of pigmented nerve cells. Brain 97:489–498

    Article  PubMed  CAS  Google Scholar 

  36. Weiss JH, Sensi SL (2000) Ca2+ permeable AMPA/kainate channels and selective neurodegeneration. Trends Neurosci 23:365–371

    Article  PubMed  CAS  Google Scholar 

  37. Frederickson CJ (1989) Neurobiology of zinc and zinc-containingneurons. Int Rev Neurobiol 31:145–238

    PubMed  CAS  Google Scholar 

  38. Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Ann Rev Biochem 61:897–946

    Article  PubMed  CAS  Google Scholar 

  39. Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500

    Article  PubMed  CAS  Google Scholar 

  40. Rotilio G, Carri MT, Rossi L, Ciriolo MR (2000) Copper-dependent oxidative stress and neurodegeneration. IUBMB Life 50(4–5):309–314

    Article  PubMed  CAS  Google Scholar 

  41. Silahtaroglu AN, Brondum-Nielsen K, Gredal O, Werdelin L, Panas M, Petersen MB, Tommerup N, Tümer Z (2002) Human CCS gene: genomic organization and exclusion as a candidate for amyotrophic lateral sclerosis (ALS). BMC Genet 3(1):5

    Article  PubMed  Google Scholar 

  42. Linder MC (2001) Copper and genomic stability. Mutation Res 475:141–152

    PubMed  CAS  Google Scholar 

  43. Ross BM, Moszczynska A, Ehrlich J, Kish SJ (1998) Low activity of key phospholipid catabolic and anabolic enzymes in human substantia nigra: possible implications for Parkinson’s disease. Neuroscience 83:791–798

    Article  PubMed  CAS  Google Scholar 

  44. Siesjo BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1:155–185

    PubMed  CAS  Google Scholar 

  45. Kristian T, Siesjo BK (1996) Calcium related damage in ischemia. Life Sci 59:357–367

    Article  PubMed  CAS  Google Scholar 

  46. Yu SP, Canzoniero LMT, Choi DW (2001) Iron homeostasis and apoptosis. Curr Opin Cell Biol 13:405–411

    Article  PubMed  CAS  Google Scholar 

  47. Bergomi M, Vinceti M, Nacci G, Pietrini V, Bratter P, Alber D, Ferrari A, Vescovi L, Guidetti D, Sola P, Malagu S, Aramini C, Vivoli G (2002) Environmental exposure to trace elements and risk of amyotrophic lateral sclerosis: a population-based case-control study. Environ Res 89(2):116–123

    Article  PubMed  CAS  Google Scholar 

  48. Nagano S, Satoh M, Sumi H (2001) Reduction of metallothioneins promotes the disease expression of familial amyotrophic lateral sclerosis mice in a dose-dependent manner. Eur J Neurosci 13(7):1363–1370

    Article  PubMed  CAS  Google Scholar 

  49. Shaw IC, Fitzmaurice PS, Mitchell JD, Lynch PG (1995) Studies on cellular free radical protection mechanisms in the anterior horn from patients with amyotrophic lateral sclerosis. Neurodegeneration 4(4):391–396

    Article  PubMed  CAS  Google Scholar 

  50. Tomblyn M, Kasarskis EJ, Xu Y, St Clair DK (1998) Distribution of MnSOD polymorphisms in sporadic ALS patients. J Mol Neurosci 10(1):65–66

    Article  PubMed  CAS  Google Scholar 

  51. Liu Y, Brooks BR, Taniguchi N, Hartmann HA (1998) CuZnSOD and MnSOD immunoreactivity in brain stem motor neurons from amyotrophic lateral sclerosis patients. Acta Neuropathol (Berl) 95(1):63–70

    Article  CAS  Google Scholar 

  52. Pamphlett R, McQuilty R, Zarkos K (2001) Blood levels of toxic and essential metals in motor neuron disease. Neurotoxicology 22(3):401–410

    Article  PubMed  CAS  Google Scholar 

  53. Kanias GD, Kapaki E (1997) Trace elements, age, and sex in amyotrophic lateral sclerosis disease. Biol Trace Elem Res 56(2):187–201

    Article  PubMed  CAS  Google Scholar 

  54. Kurlander HM, Patten BM (1979) Metals in spinal cord tissue of patients dying of motor neuron disease. Ann Neurol 6(1):21–24

    Article  PubMed  CAS  Google Scholar 

  55. Khare SS, Ehmann WD, Kasarskis EJ, Markesbery WR (1990) Trace element imbalances in amyotrophic lateral sclerosis. Neurotoxicology 11(3):521–532

    PubMed  CAS  Google Scholar 

  56. Markesbery WR, Ehmann WD, Candy JM (1995) Neutron activation analysis of trace elements in motor neuron disease spinal cord. Neurodegeneration 4(4):383–390

    Article  PubMed  CAS  Google Scholar 

  57. Torsdottir G, Kristinsson J, Gudmundsson G, Snaedal J, Johannesson T (2000) Copper, ceruloplasmin and superoxide dismutase (SOD) in amyotrophic lateral sclerosis. Pharmacol. Toxicol. 87(3):126–130

    Article  PubMed  CAS  Google Scholar 

  58. Kasarskis EJ, Tandon L, Lovell MA, Ehmann WD (1995) Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J Neurol Sci 130(2):203–208

    Article  PubMed  CAS  Google Scholar 

  59. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  PubMed  CAS  Google Scholar 

  60. Ince PG, Shaw PJ, Candy JM, Mantle D, Ehmann W, Markesbury W (1994) Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett 182(1):87–90

    Article  PubMed  CAS  Google Scholar 

  61. Nagata H, Miyata S, Nakamura S, Kameyama M, Katsui Y (1985) Heavy metal concentrations in blood cells in patients with amyotrophic lateral sclerosis. J Neurol Sci 67(2):173–178

    Article  PubMed  CAS  Google Scholar 

  62. Kihira T, Mukoyama M, Ando K, Yase Y, Yasui M (1990) Determination of manganese concentrations in the spinal cords from amyotrophic lateral sclerosis patients by inductively coupled plasma emission spectroscopy. J Neurol Sci 98(2–3):251–258

    Article  PubMed  CAS  Google Scholar 

  63. Ejima A, Watanabe C, Koyama H, Satoh H (1996) Analysis of trace elements in the central nerve tissues with inductively coupled plasma-mass spectrometry. Tohoku J Exp Med 178(1):1–10

    Article  PubMed  CAS  Google Scholar 

  64. Miyata S, Nakamura S, Nagata H, Kameyama M (1983) Increased manganese level in spinal cords of amyotrophic lateral sclerosis determined by radiochemical neutron activation analysis. J Neurol Sci 61(2):283–293

    Article  PubMed  CAS  Google Scholar 

  65. Mitchell JD, East BW, Harris IA (1986) Trace elements in the spinal cord and other tissues in motor neuron disease. J Neurol Neurosurg Psych 49(2):211–215

    CAS  Google Scholar 

  66. Yanagihara R, Garruto RM, Gajdusek DC, Tomita A, Uchikawa T, Konagaya Y, Chen KM, Sobue I, Plato CC, Gibbs CJ (1984) Calcium and vitamin D metabolism in Guamanian Chamorros with amyotrophic lateral sclerosis and parkinsonism-dementia. Ann Neurol 15(1):42–48

    Article  PubMed  CAS  Google Scholar 

  67. Garruto RM, Swyt C, Fiori CE, Yanagihara R, Gajdusek DC (1985) Intraneuronal deposition of calcium and aluminium in amyotropic lateral sclerosis of Guam. Lancet 2(8468):1353

    Article  PubMed  CAS  Google Scholar 

  68. Kjellin KG (1967) The CSF iron in patients with neurological diseases. Acta Neurol Scand 43(3):299–313

    Article  PubMed  CAS  Google Scholar 

  69. Chen KM (1995) Disappearance of ALS from Guam: implications for exogenous causes. Rinsho Shinkeigaku 35(12):1549–1553

    PubMed  CAS  Google Scholar 

  70. Adamek D, Tomik B, Pichór A, Kałuża J, Szczudlik A (2002) Heterogeneity of neuropathological changes in ALS. The review of own autopsy material. Folia Neuropathologica 40:119–124

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Education and Science, State Committee for Scientific Research grant 112/E-356/SPB/DESY/P-05/DWM728/2003–2005 and IHP-Contract HPRI-CT-1999-00040/2001-00140 of the European Commission. Thanks are also due to The European Community-Research Infrastructure Action under FP6 “Structuring the European Research Area” Programme (through the Integrated Infrastructure Initiative “Integrating Activity on Synchrotron and Free Electron Laser Science”) and Experimental grants: HASYLAB II-02–092 and ESRF LS 2111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Szczerbowska-Boruchowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomik, B., Chwiej, J., Szczerbowska-Boruchowska, M. et al. Implementation of X-ray Fluorescence Microscopy for Investigation of Elemental Abnormalities in Amyotrophic Lateral Sclerosis. Neurochem Res 31, 321–331 (2006). https://doi.org/10.1007/s11064-005-9030-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-9030-6

Keywords

Navigation