Skip to main content

Advertisement

Log in

A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Helicobacter pylori is a major human pathogen that can cause peptic ulcers and chronic gastritis. Bismuth-based triple or quadruple therapies are commonly recommended for the treatment of H. pylori infections. However, the molecular mechanisms underlying treatment with bismuth are currently not fully understood. We have conducted a detailed comparative proteomic analysis of H. pylori cells both before and after treatment with colloidal bismuth subcitrate (CBS). Eight proteins were found to be significantly upregulated or downregulated in the presence of CBS (20 μg mL−1). Bismuth-induced oxidative stress was confirmed by detecting higher levels of lipid hydroperoxide (approximately 1.8 times) and hemin (approximately 3.4 times), in whole cell extracts of bismuth-treated H. pylori cells, compared with those from untreated cells. The presence of bismuth also led to an approximately eightfold decrease in cellular protease activities. Using immobilized-bismuth affinity chromatography, we isolated and subsequently identified seven bismuth-binding proteins from H. pylori cell extracts. The intracellular levels of four of these proteins (HspA, HspB, NapA and TsaA) were influenced by the addition of CBS, which strongly suggests that they interact directly with bismuth. The other bismuth-interacting proteins identified were two enzymes (fumarase and the urease subunit UreB), and a translational factor (Ef-Tu). Our data suggest that the inhibition of proteases, modulation of cellular oxidative stress and interference with nickel homeostasis may be key processes underlying the molecular mechanism of bismuth’s actions against H. pylori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CBS:

Colloidal bismuth subcitrate

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate

2-DE:

Two-dimensional gel electrophoresis

DTT:

Dithiothreitol

FBS:

Fetal bovine serum

ICP:

Inductively coupled plasma

IEF:

Isoelectric focusing

IMAC:

Immobilized-metal affinity chromatography

LPO:

Lipid hydroperoxide

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

NTA:

Nitrilotriacetate

PAGE:

Polyacylamide gel electrophoresis

pI:

Isoelectric point

PMSF:

Phenylmethylsulfonyl fluoride

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

References

  1. Cover TL, Blaser MJ (1996) Adv Intern Med 41:85–117

    PubMed  CAS  Google Scholar 

  2. Suerbaum S, Michetti P (2002) N Engl J Med 347:1175–1186

    Article  PubMed  CAS  Google Scholar 

  3. Wyatt JI, Rathbone BJ, Dixon MF, Heatley RV (1987) J Clin Pathol 40:841–848

    Article  PubMed  CAS  Google Scholar 

  4. Murakami M, Yoo JK, Teramura S, Yamamoto K, Saita H, Matuo K, Asada T, Kita T (1990) J Clin Gastroenterol 12(S1):S104–S109

    Article  PubMed  Google Scholar 

  5. Cereijido M, Shoshani L, Contreras RG (2000) Am J Physiol Gastrointest Liver Physiol 279:G477–G482

    PubMed  CAS  Google Scholar 

  6. Sears CL (2000) Am J Physiol Gastrointest Liver Physiol 279:G1129–G1134

    PubMed  CAS  Google Scholar 

  7. Dooley CP, Cohen H, Fitzgibbons PL, Bauer M, Appleman MD, Perez-Perez GI, Blaser MJ (1989) N Engl J Med 321:1562–1566

    Article  PubMed  CAS  Google Scholar 

  8. Perez-Perez GI, Dworkin BM, Chodos JE, Blaser MJ (1988) Ann Intern Med 109:11–17

    PubMed  CAS  Google Scholar 

  9. Negrini R, Savio A, Appelmelk BJ (1997) Helicobacter 2(S1):S13–S16

    Article  PubMed  Google Scholar 

  10. Xia HH, Wong BC, Talley NJ, Lam SK (2002) Expert Opin Pharmacother 3:1301–1311

    Article  PubMed  CAS  Google Scholar 

  11. Megraud F (2004) Drugs 64:1893–1904

    Article  PubMed  CAS  Google Scholar 

  12. Midolo PD, Lambert JR, Kerr TG, Tee W (1999) Eur J Clin Microbiol Infect Dis 18:832–834

    Article  PubMed  CAS  Google Scholar 

  13. Lambert JR, Midolo P (1997) Aliment Pharmacol Ther 11(S1):27–33

    Article  PubMed  Google Scholar 

  14. Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, Kunstmann E, Dyrek I, Achtman M (1998) Proc Natl Acad Sci USA 95:12619–12624

    Article  PubMed  CAS  Google Scholar 

  15. Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow S (2000) Proc Natl Acad Sci USA 97:14668–14673

    Article  PubMed  CAS  Google Scholar 

  16. Kulkarni PP, She YM, Smith SD, Roberts EA, Sarkar B (2006) Chem Eur J 12:2410–2422

    Article  CAS  Google Scholar 

  17. Sun X, Chiu J-F, He Q-Y (2005) Expert Rev Proteomics 2:649–657

    Article  PubMed  CAS  Google Scholar 

  18. Szpunar J (2005) Analyst 130:442–465

    Article  PubMed  CAS  Google Scholar 

  19. Goodwin CS, Blake P, Blincow E (1986) J Antimicrob Chemother 17:309–314

    Article  PubMed  CAS  Google Scholar 

  20. He Q-Y, Lau GK, Zhou Y, Yuen ST, Lin MC, Kung HF, Chiu J-F (2003) Proteomics 3:666–674

    Article  PubMed  CAS  Google Scholar 

  21. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  22. Clauser KR, Baker P, Burlingame AL (1999) Anal Chem 71:2871–2882

    Article  PubMed  CAS  Google Scholar 

  23. Mobley HL, Cortesia MJ, Rosenthal LE, Jones BD (1988) J Clin Microbiol 26:831–836

    PubMed  CAS  Google Scholar 

  24. Berry EA, Trumpower BL (1987) Anal Biochem 161:1–15

    Article  PubMed  CAS  Google Scholar 

  25. Pleissner KP, Eifert T, Buettner S, Schmidt F, Boehme M, Meyer TF, Kaufmann SH, Jungblut PR (2004) Proteomics 4:1305–1313

    Article  PubMed  CAS  Google Scholar 

  26. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Venter JC et al (1997) Nature 388:539–547

    Article  PubMed  CAS  Google Scholar 

  27. Riley M (1993) Microbiol Rev 57:862–952

    PubMed  CAS  Google Scholar 

  28. Mendz GL, Hazell SL (1993) Biochem Mol Biol Int 31:325–332

    PubMed  CAS  Google Scholar 

  29. Krab IM, Parmeggiani A (1998) Biochim Biophys Acta 1443:1–22

    PubMed  CAS  Google Scholar 

  30. McColm AA, McLaren A, Klinkert G, Francis MR, Connolly PC, Grinham CJ, Campbell CJ, Selway S, Williamson R (1996) Aliment Pharmacol Ther 10:241–250

    Article  PubMed  CAS  Google Scholar 

  31. Wang G, Conover RC, Benoit S, Olczak AA, Olson JW, Johnson MK, Maier RJ (2004) J Biol Chem 279:51908–51914

    Article  PubMed  CAS  Google Scholar 

  32. Jarolim P, Lahav M, Liu SC, Palek J (1990) Blood 76:2125–2131

    PubMed  CAS  Google Scholar 

  33. Miller RA, Britigan BE (1997) Clin Microbiol Rev 10:1–18

    PubMed  CAS  Google Scholar 

  34. Tytgat GN, Rauws EA, De Koster E (1998) Scand J Gastroenterol 155:68–81

    Google Scholar 

  35. Mai UE, Perez-Perez GI, Wahl LM, Wahl SM, Blaser MJ, Smith PD (1991) J Clin Invest 87:894–900

    Article  PubMed  CAS  Google Scholar 

  36. Evans DJ Jr, Evans DG, Takemura T, Nakano H, Lampert HC, Graham DY, Granger DN, Kvietys PR (1995) Infect Immun 63:2213–2220

    PubMed  CAS  Google Scholar 

  37. Dundon WG, Polenghi A, Del GG, Rappuoli R, Montecucco C (2001) FEMS Microbiol Lett 199:143–149

    Article  PubMed  CAS  Google Scholar 

  38. Sun H, Zhang L, Szeto KY (2004) Met Ions Biol Syst 41:333–378

    PubMed  CAS  Google Scholar 

  39. Payne SM (1993) Trends Microbiol 1:66–69

    Article  PubMed  CAS  Google Scholar 

  40. Dhaenens L, Szczebara F, Van NS, Husson MO (1999) Res Microbiol 150:475–481

    Article  PubMed  CAS  Google Scholar 

  41. Zhang L, Szeto KY, Wong WB, Loh TT, Sadler PJ, Sun H (2001) Biochemistry 40:13281–13287

    Article  PubMed  CAS  Google Scholar 

  42. Jarolim P, Lahav M, Liu SC, Palek J (1990) Blood 76:2125–2131

    PubMed  CAS  Google Scholar 

  43. Stratton CW, Warner RR, Coudron PE, Lilly NA (1999) J Antimicrob Chemother 43:659–666

    Article  PubMed  CAS  Google Scholar 

  44. Phadnis SH, Parlow MH, Levy M, Ilver D, Caulkins CM, Connors JB, Dunn BE (1996) Infect Immun 64:905–912

    PubMed  CAS  Google Scholar 

  45. Butcher GP, Ryder SD, Hughes SJ, Stewart M, Bird N, Haqqani MT, Rhodes JM (1992) Digestion 53:142–148

    Article  PubMed  CAS  Google Scholar 

  46. Zhang L, Mulrooney SB, Fung KL, Zeng YB, Ko BCB, Hausinger RP, Sun H (2006) Biometals 19:503–511

    Article  PubMed  CAS  Google Scholar 

  47. Schlesinger MJ (1990) J Biol Chem 265:12111–12114

    PubMed  CAS  Google Scholar 

  48. Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998) Annu Rev Biochem 67:581–608

    Article  PubMed  CAS  Google Scholar 

  49. Suerbaum S, Thiberge JM, Kansau I, Ferrero RL, Labigne A (1994) Mol Microbiol 14:959–974

    Article  PubMed  CAS  Google Scholar 

  50. Kansau I, Guillain F, Thiberge JM, Labigne A (1996) Mol Microbiol 22:1013–1023

    Article  PubMed  CAS  Google Scholar 

  51. Dunn BE, Roop RM, Sung CC, Sharma SA, Perez-Perez GI, Blaser MJ (1992) Infect Immun 60:1946–1951

    PubMed  CAS  Google Scholar 

  52. De LA, Baldi A, Russo P, Todisco A, Altucci L, Giardullo N, Pasquale L, Iaquinto S, D'Onofrio V, Parodi MC, Paggi MG, Iaquinto G (2003) Cancer Res 63:6350–6356

    Google Scholar 

  53. Ge R, Zhang Y, Sun X, Watt RM, He Q-Y, Huang J-D, Wilcox DE, Sun H (2006) J Am Chem Soc 128:11330–11331

    Article  PubMed  CAS  Google Scholar 

  54. Ge R, Watt RM, Sun X, Tanner JA, He Q-Y, Huang J-D, Sun H (2006) Biochem J 393:285–293

    Article  PubMed  CAS  Google Scholar 

  55. Sun H, Li H, Harvey I, Sadler PJ (1999) J Biol Chem 274:29094–29101

    Article  PubMed  CAS  Google Scholar 

  56. Jin L, Szeto KY, Zhang L, Du W, Sun H (2004) J Inorg Biochem 98:1331–1337

    Article  PubMed  CAS  Google Scholar 

  57. Ge R, Sun H (2007) Acc Chem Res 40:267–274

    Article  PubMed  CAS  Google Scholar 

  58. Potempa J, Travis J (2000) In: von der Helm K, Korant BD, Cheronis JC (eds) Proteases as targets for therapy. Springer, Berlin, pp 159–188

Download references

Acknowledgements

This work was supported by the Research Grants Council of Hong Kong (to H.S., HKU703904P and HKU704306P), the Research Fund for the Control of Infectious Diseases (to J.-D.H., 01030182), the Area of Excellence Scheme of the University Grants Committee, Institute of Molecular Technology for Drug Discovery and Synthesis) (AoE/P-10/01), Livzon Pharmaceutical Ltd and the University of Hong Kong. We are grateful to Jen-Fu Chiu (Department of Anatomy, Li Ka Shing Faculty of Medicine) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhe Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_237_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, R., Sun, X., Gu, Q. et al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori . J Biol Inorg Chem 12, 831–842 (2007). https://doi.org/10.1007/s00775-007-0237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0237-7

Keywords

Navigation