Skip to main content
Log in

Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Azotochelin is a biscatecholate siderophore produced by the nitrogen-fixing soil bacterium Azotobacter vinelandii. The complexation properties of azotochelin with a series of oxoanions [Mo(VI), W(VI) and V(V)] and divalent cations [Cu(II), Zn(II), Co(II) and Mn(II)] were investigated by potentiometry, UV–vis and X-ray spectroscopy. Azotochelin forms a strong 1:1 complex with molybdate (log K =  7.6 ± 0.4) and with tungstate and vanadate; the stability of the complexes increases in the order Mo < V < W (log K Moapp  = 7.3 ± 0.4; log K Vapp  = 8.8 ± 0.4 and log K Wapp  = 9.0 ± 0.4 at pH 6.6). The Mo atom in the 1:1 Mo–azotochelin complex is bound to two oxo groups in a cis position and to the two catecholate groups of azotochelin, resulting in a slightly distorted octahedral configuration. Below pH 5, azotochelin appears to form polynuclear complexes with Mo in addition to the 1:1 complex. Azotochelin also forms strong complexes with divalent metals. Of the metals studied, Cu(II) binds most strongly to azotochelin \({(\log \beta_{{{\text{CuLH}}^{{2 -}}}}=-12.9\pm 0.1)}\), followed by Zn(II) \({(\log \beta _{{{\text {ZnL}}^{{3 -}}}} =-24.1\pm 0.14, \log \beta _{{{\text {ZnLH}}^{{2 -}}}} =-17.83\pm 0.09)}\), Mn(II) \({(\log \beta _{{{\text {MnL}}^{{3 -}}}} = -29, \log\beta_{{{\text {MnLH}}^{{2-}}}}=-18.6\pm 0.8, \log \beta _{{{\text {MnLH}}_{2} ^{-}}} =-11.5\pm 0.7)}\) and Co(II) \({(\log \beta _{{{\text {CoLH}}^{{2 -}}}}= -23.0\pm0.3, \log \beta _{{{\text {CoLH}}_{2} ^{-}}}=-13.5\pm 0.2)}\). Since very few organic ligands are known to bind strongly to oxoanions (and particularly molybdate) at circumneutral pH, the unusual properties of azotochelin may be used for the separation and concentration of oxoanions in the laboratory and in the field. In addition, azotochelin may prove useful for the investigation of the biogeochemistry of Mo, W and V in aquatic and terrestrial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stiefel EI (2002) In: Sigel A, Sigel H (eds) Molybdenum and tungsten. Their roles in biological processes, vol 39. Dekker, New York, pp 1–30

  2. Kimblin C, Bu XH, Butler A (2002) Inorg Chem 41:161–163

    Article  PubMed  CAS  Google Scholar 

  3. Carter-Franklin JN, Butler A (2004) J Am Chem Soc 126:15060–15066

    Article  PubMed  CAS  Google Scholar 

  4. Bishop PE, Premakumar R, Dean DR, Jacobson MR, Chisnell JR, Rizzo TM, Kopczynski J (1986) Science 232:92–94

    Article  CAS  PubMed  Google Scholar 

  5. Hemrika W, Renirie R, Macedo-Ribeiro S, Messerschmidt A, Wever R (1999) J Biol Chem 274:23820–23827

    Article  PubMed  CAS  Google Scholar 

  6. Messerschmidt A, Wever R (1996) Proc Natl Acad Sci USA 93:392–396

    Article  PubMed  CAS  Google Scholar 

  7. Eady RR (2003) Coord Chem Rev 237:23–30

    Article  CAS  Google Scholar 

  8. Kletzin A, Adams MWW (1996) FEMS Microbiol Rev 18:5–63

    Article  PubMed  CAS  Google Scholar 

  9. Chan MK, Mukund S, Kletzin A, Adams MWW, Rees DC (1995) Science 267:1463–1469

    Article  PubMed  CAS  Google Scholar 

  10. Keeler RF, Varner JE (1957) Arch Biochem Biophys 70:585–590

    Article  PubMed  CAS  Google Scholar 

  11. Benemann JR, Smith GM, Kostel PJ, McKenna CE (1973) FEBS Lett 29:219–221

    Article  PubMed  CAS  Google Scholar 

  12. Hales BJ, Case EE (1987) J Biol Chem 262:16205–16211

    PubMed  CAS  Google Scholar 

  13. Siemann S, Schneider K, Oley M, Müller A (2003) Biochemistry 42:3846–3857

    Article  PubMed  CAS  Google Scholar 

  14. Hallenbeck PC, Benemann JR (1980) FEMS Microbiol Lett 9:121–124

    Article  CAS  Google Scholar 

  15. Kahn D, Hawkins M, Eady RR (1982) J Gen Microbiol 128:779–787

    CAS  Google Scholar 

  16. Lei S, Pulakat L, Gavini N (1999) Biochem Biophys Res Commun 264:186–190

    Article  PubMed  CAS  Google Scholar 

  17. Jacobson MR, Premakumar R, Bishop PE (1986) J Bacteriol 167:480–486

    PubMed  CAS  Google Scholar 

  18. Stintzi A, Barnes C, Xu J, Raymond KN (2000) Proc Natl Acad Sci USA 97:10691–10696

    Article  PubMed  CAS  Google Scholar 

  19. Page WJ, von Tigerstrom M (1982) J Bacteriol 151:237–242

    PubMed  CAS  Google Scholar 

  20. Patel U, Baxi MD, Modi VV (1988) Curr Microbiol 17:179–182

    Article  CAS  Google Scholar 

  21. Saxena B, Vithlani L, Modi VV (1989) Curr Microbiol 19:291–295

    Article  CAS  Google Scholar 

  22. Duhme AK, Hider RC, Naldrett MJ, Pau RN (1998) J Biol Inorg Chem 3:520–526

    Article  CAS  Google Scholar 

  23. Cornish AS, Page WJ (2000) Appl Environ Microbiol 66:1580–1586

    Article  PubMed  CAS  Google Scholar 

  24. Chimiak A, Neilands JB (1984) Struct Bonding 58:89–96

    Article  CAS  Google Scholar 

  25. Merz KW, Fink J (1956) Arch Pharm 289:347–358

    Article  CAS  Google Scholar 

  26. Tkachev VV, Atovmyan LO (1975) Sov J Coord Chem Engl Transl 1:715–720

    Google Scholar 

  27. Griffith WP, Pumphrey CA, Rainey TA (1986) J Chem Soc Dalton Trans 6:1125–1128

    Article  Google Scholar 

  28. Westall JC, Zachary JL, Morel FMM (1976) Technical Report 18. MIT, Cambridge

  29. Westall JC (1982) Report 82–02. Department of Chemistry, Oregon St University, Corvallis

  30. Herbelin AL, Westall JC (1999) Report 99-01. Department of Chemistry, Oregon St University, Corvallis

  31. Vetrogon VI, Lukyanenko NG, Schwing-Weill MJ, Arnaud-Neu F (1994) Talanta 41:2105–2112

    Article  CAS  PubMed  Google Scholar 

  32. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753

    Article  CAS  PubMed  Google Scholar 

  33. Martell AE, Smith RM (1974–1989) Critical stability constants. Plenum, New York

  34. Cruywagen JJ (2000) Adv Inorg Chem 49:127–182

    CAS  Google Scholar 

  35. Cruywagen JJ, Draaijer AG, Heyns JBB, Rohwer EA (2002) Inorg Chim Acta 331:322–329

    Article  CAS  Google Scholar 

  36. Ressler T (1998) J Synchrotron Radiat 5:118–122

    Article  PubMed  CAS  Google Scholar 

  37. Farkas E, Csoka H, Gama S, Santos MA (2000) Talanta 57:935–943

    Article  Google Scholar 

  38. Lu X, Liu S, Mao X, Bu X (2001) J Mol Struct 562:89–94

    Article  CAS  Google Scholar 

  39. Atovmyan LO, Sokolova Y, Tkachev VV (1970) Dokl Phys Chem Sect 195:1355–1356

    CAS  Google Scholar 

  40. Duhme AK (1997) J Chem Soc Dalton Trans 773–778

  41. Torreggiani A, Trinchero A, Tamba M, Taddei P (2005) J Raman Spectrosc 36:380–388

    Article  CAS  Google Scholar 

  42. Cornish AS, Page WJ (1998) Microbiology 144:1747–1754

    Article  CAS  Google Scholar 

  43. Boukhalfa H, Crumbliss AL (2002) BioMetals 15:325–339

    Article  PubMed  CAS  Google Scholar 

  44. Hou Z, Raymond KN, O‘Sullivan B, Esker TW, Nishio T (1998) Inorg Chem 37:6630–6637

    Article  PubMed  CAS  Google Scholar 

  45. Carrano CJ, Cooper SR, Raymond KN (1979) J Am Chem Soc 101:599–604

    Article  CAS  Google Scholar 

  46. Eady RR, Robson RL, Richardson TH, Miller RW, Hawkins M (1987) Biochem J 244:197–207

    PubMed  CAS  Google Scholar 

  47. Eady RR, Robson RL (1984) Biochem J 224:853–862

    PubMed  CAS  Google Scholar 

  48. Bishop PE, Jarlenski DML, Hetherington DR (1982) J Bacteriol 150:1244–1251

    PubMed  CAS  Google Scholar 

  49. Lei S, Pulakat L, Gavini N (2000) FEBS Lett 482:149–153

    Article  PubMed  Google Scholar 

  50. Self WT, Grunden AM, Hasona A, Shanmugam KT (2001) Res Microbiol 152:311–321

    Article  PubMed  CAS  Google Scholar 

  51. Anderson MA, Morel FMM (1982) Limnol Oceanogr 27:789–813

    Article  CAS  Google Scholar 

  52. Sunda WG, Huntsman SA (1997) Nature 390:389–392

    Article  CAS  Google Scholar 

  53. Sunda WG, Huntsman SA (1995) Mar Chem 50:189–206

    Article  CAS  Google Scholar 

  54. Sunda WG, Swift DG, Huntsman SA (1991) Nature 351:55–57

    Article  CAS  Google Scholar 

  55. Timmermans KR, Stolte W, de Baar HJW (1994) Mar Biol 121:389–396

    Article  CAS  Google Scholar 

  56. Wilhelm SW, Trick CG (1994) Limnol Oceanogr 39:1979–1984

    Article  CAS  Google Scholar 

  57. Page WJ (1995) BioMetals 8:30–36

    CAS  Google Scholar 

  58. Duhme AK, Hider RC, Khodr HH (1997) Chem Ber/Recueil 130:969–973

    CAS  Google Scholar 

  59. Knosp O, von Tigerstrom M, Page WJ (1984) J Bacteriol 159:341–347

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Norbert Clauer for his help throughout this work. This study was supported by grants from the NSF (CHE-0221978, Center for Environmental Bioinorganic Chemistry) and the French Department of Research, as well as a fellowship from the French Department of Education to J.P.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. L. Kraepiel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2006_194_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellenger, JP., Arnaud-Neu, F., Asfari, Z. et al. Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin. J Biol Inorg Chem 12, 367–376 (2007). https://doi.org/10.1007/s00775-006-0194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0194-6

Keywords

Navigation