Skip to main content
Log in

Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Hexadentate bacillibactin is the siderophore of Bacillus subtilis and is structurally similar to the better known enterobactin of Gram-negative bacteria such as Escherichia coli. Although both are triscatecholamide trilactones, the structural differences of these two siderophores result in opposite metal chiralities, different affinity for ferric ion, and dissimilar iron transport behaviors. Bacillibactin was first reported as isolated from Corynebacterium glutamicum and called corynebactin. However, failure of iron-starved C. glutamicum to transport 55Fe bacillibactin and lack of required bacillibactin biosynthetic genes suggest that bacillibactin is not the siderophore produced by this organism. Iron transport mediated by siderophores in B. subtilis occurs through a transport process that is specific for the iron chelating moiety, with parallel pathways for catecholates and hydroxamates. For bacillibactin, enterobactin, and their analogs, neither chirality nor presence of an amino acid spacer affects the uptake and transport process, but alteration of the net charge and size of the molecule impedes the recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abergel RA, Moore EG, Strong RK, Raymond KN (2006) J Am Chem Soc (in press)

  2. Boukhalfa H, Crumbliss AL (2002) BioMetals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  3. Stintzi A, Raymond KN (2002) In: Templeton DM (ed) Molecular and cellular iron transport. Dekker, New York, pp 273–320

  4. Brickman TJ, McIntosh MA (1992) J Biol Chem 267:12350–12355

    Article  CAS  PubMed  Google Scholar 

  5. Budzikiewicz H, Bossenkamp A, Taraz K, Pandey A, Meyer JM (1997) Z Naturforsch C Biosci 52:551–554

    Article  CAS  Google Scholar 

  6. Russell LM, Cryz SJ Jr, Holmes RK (1984) Infect Immun 45:143–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. May JJ, Wendrich TM, Marahiel MA (2001) J Biol Chem 276:7209–7217

    Article  CAS  PubMed  Google Scholar 

  8. Dertz EA, Xu J, Stintzi A, Raymond KN (2006) J Am Chem Soc 128:22–23

    Article  CAS  PubMed  Google Scholar 

  9. Holmes RK (2000) J Infect Dis 181(Suppl 1):S156–S167

    Article  CAS  PubMed  Google Scholar 

  10. Pappenheimer AM, Johnson SJ (1936) Br J Exp Pathol 17:335–341

    CAS  Google Scholar 

  11. Freeman VJ (1951) J Bacteriol 61:675–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Groman NB (1953) Science 117:297–299

    Article  CAS  PubMed  Google Scholar 

  13. Tao X, Schiering N, Zeng HY, Ringe D, Murphy JR (1994) Mol Microbiol 14:191–197

    Article  CAS  PubMed  Google Scholar 

  14. Qian YL, Lee JH, Holmes RK (2002) J Bacteriol 184:4846–4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brune I, Werner H, Huser AT, Kalinowski J, Puhler A, Tauch A (2006) BMC Genomics 7:21–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Mol Microbiol 29:189–198

    Article  CAS  PubMed  Google Scholar 

  17. Arnow LE (1937) J Biol Chem 118:531–537

    Article  CAS  Google Scholar 

  18. Gillam AH, Lewis AG, Andersen RJ (1981) Anal Chem 53:841–844

    Article  CAS  Google Scholar 

  19. Schwyn B, Neilands JB (1987) Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  20. Tai SPS, Krafft AE, Nootheti P, Holmes RK (1990) Microbial Pathog 9:267–273

    Article  CAS  Google Scholar 

  21. Kunkle CA, Schmitt MP (2005) J Bacteriol 187:422–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito T, Neilands JB (1958) J Am Chem Soc 80:4645–4647

    Article  CAS  Google Scholar 

  23. Temirov YV, Esikova TZ, Kashparov IA, Balashova TA, Vinokurov LM, Alakhov YB (2003) Russ J Bioorganic Chem 29:542–549

    Article  CAS  Google Scholar 

  24. Peters WJ, Warren RAJ (1968) Biochim Biophys Acta 165:225–232

    Article  CAS  PubMed  Google Scholar 

  25. Peters WJ, Warren RAJ (1970) Can J Microbiol 16:1285–1291

    Article  CAS  PubMed  Google Scholar 

  26. Peters WJ, Warren RAJ (1970) Can J Microbiol 16:1179–1185

    Article  CAS  PubMed  Google Scholar 

  27. Walsh BL, Warren RAJ (1971) Can J Microbiol 17:53–59

    Article  CAS  PubMed  Google Scholar 

  28. Byers BR, Lankford CE (1968) Biochim Biophys Acta 165:563–566

    Article  CAS  PubMed  Google Scholar 

  29. Peters WJ, Warren RAJ (1968) J Bacteriol 95:360–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walsh BL, Peters WJ, Warren RAJ (1971) Can J Microbiol 17:53–59

    Article  CAS  PubMed  Google Scholar 

  31. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda M, Nakagawa S (2003) Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  33. Meyer M, Telford JR, Cohen SM, White DJ, Xu J, Raymond KN (1997) J Am Chem Soc 119:10093–10103

    Article  CAS  Google Scholar 

  34. Xu J, Franklin SJ, Whisenhunt DW, Raymond KN (1995) J Am Chem Soc 117:7245–7246

    Article  CAS  Google Scholar 

  35. Rodgers SJ, Lee C-W, Ng C-Y, Raymond KN (1987) Inorg Chem 26:1622–1625

    Article  CAS  Google Scholar 

  36. Dertz EA, Xu J, Raymond KN (2006) Inorg Chem 45(14):5465–5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jurchen KM, Raymond KN (2006) Inorg Chem 45:1078–1090

    Article  CAS  PubMed  Google Scholar 

  38. Ollinger J, Song K-B, Antelmann H, Hecker M, Helmann JD (2006) J Bacteriol 188(10):3664–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Dusterhoft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Henaut A, Hilbert H, Holsappel S Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, Oreilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danchin A (1997) Nature 390:249–256

    Article  CAS  PubMed  Google Scholar 

  40. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dosselaere F, Vanderleyden J (2001) Crit Rev Microbiol 27:75–131

    Article  CAS  PubMed  Google Scholar 

  42. Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Puhler A (2005) J Bacteriol 187:4671–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Quentin Y, Fichant G, Denizot F (1999) J Mol Biol 287:467–484

    Article  CAS  PubMed  Google Scholar 

  44. Baichoo N, Wang T, Ye R, Helmann JD (2002) Mol Microbiol 45:1613–1629

    Article  CAS  PubMed  Google Scholar 

  45. Schneider R, Hantke K (1993) Mol Microbiol 8:111–121

    Article  CAS  PubMed  Google Scholar 

  46. Baumler AJ, Norris TL, Lasco T, Voigt W, Reissbrodt R, Rabsch W, Heffron F (1998) J Bacteriol 180:1446–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin H, Fischbach MA, Liu DR, Walsh CT (2005) J Am Chem Soc 127:11075–11084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dertz EA, Xu J, Stintzi A, Raymond KN (2006) J Am Chem Soc 128:22–23

    Article  CAS  PubMed  Google Scholar 

  49. Rabsch W, Voigt W, Reissbrodt R, Tsolis RM, Baumler AJ (1999) J Bacteriol 181:3610–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bluhm ME, Hay BP, Kim SS, Dertz EA, Raymond KN (2002) Inorg Chem 41:5475–5478

    Article  CAS  PubMed  Google Scholar 

  51. Rabsch W, Methner U, Voigt W, Tschape H, Reissbrodt R, Williams PH (2003) Infect Immun 71:6953–6961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Proc Natl Acad Sci USA 100:3677–3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Horn JD, Gramer CJ, O’Sullivan B, Jurchen KMC, Doble DMJ, Raymond KN (2002) C R Chim 5:395–404

    Article  Google Scholar 

  54. Matzanke BF, Ecker DJ, Yang TS, Huynh BH, Mueller G, Raymond KN (1986) J Bacteriol 167:674–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thulasiraman P, Newton SMC, Xu JD, Raymond KN, Mai C, Hall A, Montague MA, Klebba PE (1998) J Bacteriol 180:6689–6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Lisa Whitworth assisted in maintenance of the bacterial cultures, and we thank John Helmann, Rebecca Abergel, and Trisha Hoette for many helpful discussions. This work was supported by NIH grant AI 11744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth N. Raymond.

Additional information

Paper number 77 in the series Coordination Chemistry of Microbial Iron Transport Compounds. See Abergel et al. [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dertz, E.A., Stintzi, A. & Raymond, K.N. Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum . J Biol Inorg Chem 11, 1087–1097 (2006). https://doi.org/10.1007/s00775-006-0151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0151-4

Keywords

Navigation