Skip to main content
Log in

Endonuclease-like activity of heme proteins

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Heme proteins, metmyoglobin, methemoglobin, and metcytochrome c showed unusual affinity for double-stranded DNA. Calorimetric studies show that binding of methemoglobin to calf thymus DNA (CTDNA) is weakly endothermic, and the binding constant is 4.9±0.7×105 M−1. The Soret absorption bands of the heme proteins remained unchanged, in the presence of excess CTDNA, but a new circular dichroic band appeared at 210 nm. Helix melting studies indicated that the protein–DNA mixture denatures at a lower temperature than the individual components. Thermograms obtained by differential scanning calorimetry of the mixture indicated two distinct transitions, which are comparable to the thermograms obtained for individual components, but there was a reduction in the excess heat capacity. Activation of heme proteins by hydrogen peroxide resulted in the formation of high valent Fe(IV) oxo intermediates, and CTDNA reacted rapidly under these conditions. The rate was first-order in DNA concentration, and this reactivity resulted in DNA strand cleavage. Upon activation with hydrogen peroxide, for example, the heme proteins converted the supercoiled pUC18 DNA into nicked circular and linear DNA. No reaction occurred in the absence of the heme protein, or hydrogen peroxide. These data clearly indicate a novel property of several heme proteins, and this is first report of the endonuclease-like activity of the heme proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The Scatchard equation r/C f=K(nr) was used to determine the binding constants, where r is the number of moles of protein bound per mole of DNA, C f is the free protein concentration, and n is number of binding sites per DNA.

References

  1. Dickerson RE, Geis I (1983) Hemoglobin: Structure, Function, Evolution, and Pathology. Benjamin Cummings, Menlo Park

    Google Scholar 

  2. Schenkman J, Greim H (eds) (1993) Cytochrome P450. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Chapman SK, Daff S, Munro, Andrew W (1997) Heme: the most versatile redox center in biology? Struct. Bonding (Berlin) 1997, 88 (Metal sites in proteins and models: Iron centers), 39

  4. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North-Holland Pub Co, Amsterdam

    Google Scholar 

  5. Valentine JS, Foote CS, Greenberg A, Liebman JF (eds) (1995) Active oxygen in biochemistry. Blackie Academic & Professional, New York

    Google Scholar 

  6. Rice-Evans CA (1994) The potential for free radical damage by myoglobin. In: Trace element free radicals Oxid. Dis. [Proceedings of the International Congress Trace Element Medical Biology], 4th edn, p 92

  7. Bensasson RB, Land EJ, Truscott TG (1993) Excited states and free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  8. von Sonntag C (1987) The Chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

  9. Cadenas E (1995) Oxidative stress and antioxidant defenses. In: Ahmad S (eds) Biology. Chapman and Hall, New York, p 1

    Google Scholar 

  10. Vincent SH (1989) Semin Hematol 26:105–113

    PubMed  CAS  Google Scholar 

  11. Rodriguez-Malaver AJ, Leake DS, Rice-Evans CA (1997) FEBS Lett 406:37

    Article  PubMed  CAS  Google Scholar 

  12. Giulivi C, Cadenas E (1993) Arch Biochem Biophys 303:152

    Article  PubMed  CAS  Google Scholar 

  13. Irwin JA, Ostdal H, Davies MJ (1999) Arch Biochem Biophys 362:94

    Article  PubMed  CAS  Google Scholar 

  14. Blazheevich NV, Spirichev VB (1966) Biokhimiya (Moscow) 31:1100

    CAS  Google Scholar 

  15. Ortiz de Montellano PR, Catalano CE (1985) J Biol Chem 260:9265

    PubMed  CAS  Google Scholar 

  16. Catalano CE, Choe YS, Ortiz de Montellano PR (1989) J Biol Chem 264:10534

    PubMed  CAS  Google Scholar 

  17. Gibson JF, Ingram DJE, Nicholls P (1958) Nature 181:1398

    Article  PubMed  CAS  Google Scholar 

  18. Kelman DJ, DeGray JA, Mason RP (1994) Peroxidase activity of Mb is well documented in the literature. J Biol Chem 269:7458

    PubMed  CAS  Google Scholar 

  19. Osawa Y, Korzekwa (1991) Proc Natl Acad Sci USA 88:7081

    Article  PubMed  CAS  Google Scholar 

  20. Koppenol WH, Liebman JFJ (1984) Phys Chem 88:99

    Article  CAS  Google Scholar 

  21. Harada K, Tamura M, Yamazaki IJ (1986) Biochem 100:499

    CAS  Google Scholar 

  22. Miki H, Harada K, Yamazaki I, Tamura M, Wattanabe H (2004) Arch Biochem Biophys 275:354

    Article  Google Scholar 

  23. Kumar CV, Chaudhari A (2003) Micropor Mesopor Mater 57:181

    Article  CAS  Google Scholar 

  24. Kumar CV, Chaudhari A (2000) J Am Chem Soc 122:830

    Article  CAS  Google Scholar 

  25. Kumar CV, Chaudhari A (2002) Chem Commun 2382

  26. Kumar CV, Chaudhari A (2001) Chem Mater 13:238

    Article  CAS  Google Scholar 

  27. Kumar CV, Asuncion E (1993) J Am Chem Soc 115:8547

    Article  CAS  Google Scholar 

  28. Modukuru N, Snow KJ, Perrin jr., BS, Thota J, Kumar CV (2005) J Phys Chem B (in press)

  29. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor laboratory, New York, p 458

    Google Scholar 

  30. Perkins SJ (1986) Eur J Biochem 157:169–180

    Article  PubMed  CAS  Google Scholar 

  31. Kumar CV, Tan WB, Betts PW (1997) J Inorg Biochem 68:177

    Article  CAS  Google Scholar 

  32. Milev S, Bosshard HR, Jelesarov I (2005) Biochemistry 44:285–293

    Article  PubMed  CAS  Google Scholar 

  33. Kagen LJ (1973) Myoglobin; biochemical, physiological, and clinical aspects. Columbia University Press, New York

    Google Scholar 

  34. Dragan AI, Read CM, Makeyeva EN, Milgotina EI, Churchill MEA, Crane-Robinson C, Privalov PL (2004) J Mol Biol 343:371

    Article  PubMed  CAS  Google Scholar 

  35. Goldbeck RA, Paquette SJ, Kliger DS (2001) Biophys J 81:2919

    Article  PubMed  CAS  Google Scholar 

  36. Allis JW, Steinhardt (1969) J Biochem 8:5075

    Article  CAS  Google Scholar 

  37. Scatchard G, Ann NY (1949) Acad Sci 51:660

    Article  CAS  Google Scholar 

  38. Tinoco I Jr, Sauer K, Wang JC (1995) Physical chemistry: principles and applications in biological sciences. Prentice Hall, NJ, p 203

    Google Scholar 

  39. Kumar CV, Asuncion E (1993) J Am Chem Soc 115:8547

    Article  CAS  Google Scholar 

  40. Klump H, (1988) Chapter 3. In: Jones MN (eds) Biochemical Thermodynamics. Elsevier, Amsterdam, p 100

    Google Scholar 

  41. Klump H (1987) Ber Bunsenges Phys Chem 91:2018

    Google Scholar 

  42. Kurnit B, Shafit J, Maio J (1973) J Mol Biol 81:273

    Article  PubMed  CAS  Google Scholar 

  43. Sanchez-Ruiz J (1992) Biophys J 61:921

    CAS  PubMed  Google Scholar 

  44. Drzazga Z, Michnik A, Bartoszek M, Beck E (2001) J Thermal Anal Calorimetry 65:575

    Article  CAS  Google Scholar 

  45. Jelesarov, Bosshard HR (1999) J Mol Recognit 12:3

    Article  PubMed  CAS  Google Scholar 

  46. Antellman MS (1982) The oxidation potentials of triethylamine and triethanolamine are 0.64 and 0.46 V respectively. The encyclopedia of chemical electrode potentials Plenum, New York, p 252

    Google Scholar 

  47. An JM, Yang SJ, Yi Seh-Yoon, Jhon G-J, Nam W (1997) Bull Korean Chem Soc 18:117

    CAS  Google Scholar 

  48. Frolova EI, Ivanova EM, Konarova NI, Ryte AS, Vlassov VV, Kirillova (1993) Bioorg Khim 19:439

    PubMed  CAS  Google Scholar 

  49. Rodriguez M, Kodadek T, Torres M, Bard AJ (1990) Bioconjugate Chem 1:123

    Article  CAS  Google Scholar 

  50. Pratviel G, Bernadou J, Meunier B (1995) Angew Chem Int Ed Engl 34:746

    Article  CAS  Google Scholar 

  51. Bansal M, Lee JS, Stubbe J, Kozarich JW (1997) Nucleic Acids Res 25:1836

    Article  PubMed  CAS  Google Scholar 

  52. Detmer CA III, Pamatong FV, Bocarsly JR (1996) Inorg Chem 35:6292

    Article  CAS  Google Scholar 

  53. Absalon MJ, Wu W, Kozarich JW, Stubbe J (1995) Biochemistry 34:2076

    Article  PubMed  CAS  Google Scholar 

  54. Pogozelski WK, Tullius TD (1998) Chem Rev 98:1089

    Article  PubMed  CAS  Google Scholar 

  55. Hazlewood C, Davies MJ (1996) Arch Biochem Biophys 332:79

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Generous support from the NSF is gratefully acknowledged (DMR-0300631). Supporting information is available: two additional figures documenting the CD spectrum of Mb–CTDNA, and facile cleavage of pUC 18 DNA by Mb–H2O2. This material is available free of charge via the internet at http://pubs.acs.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Challa V. Kumar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, W.B., Cheng, W., Webber, A. et al. Endonuclease-like activity of heme proteins. J Biol Inorg Chem 10, 790–799 (2005). https://doi.org/10.1007/s00775-005-0028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0028-y

Keywords

Navigation