Skip to main content
Log in

NMR investigation of the heme electronic structure in deoxymyoglobin possessing a fluorinated heme

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The heme electronic structures of deoxymyoglobins (deoxy-Mbs) reconstituted with 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2,12,18-trimethyl-7-(trifluoromethyl)porphyrinatoiron(III) (7-PF), 13,17-bis(2-carboxylatoethyl)-3,7-difluoro-2,8,12,18-tetramethylporphyrinatoiron(III) (3,7-DF), and 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethylporphyrinatoiron(III) (2-MF) have been characterized by 1H and 19F NMR. The analysis of heme methyl proton shift patterns of the hemes in their bis-cyano forms demonstrated that, owing to the substitution of a strongly electron-withdrawing perfluoromethyl group, CF3, to porphyrin, the porphyrin π-system of 7-PF is more significantly distorted from four-fold symmetry than those of the ring-fluorinated hemes, 3,7-DF and 2-MF. The presence of the heme orientation disorder resulted in the observation of the two well-resolved 19F signals in the spectra of deoxy-Mbs possessing 7-PF and 2-MF. The 19F signals of deoxy-Mb possessing 7-PF exhibited a relatively large difference in paramagnetic shift (~30 ppm), despite their small paramagnetic shifts (~30 ppm), supporting the significant contribution of a π spin delocalization mechanism in this Mb due to the d-electron configuration derived from the 5E ground state. On the other hand, 19F signals of deoxy-Mbs with 3,7-DF as well as 2-MF exhibited large paramagnetic shifts (~250 ppm) with a relatively small difference in the paramagnetic shift (~20 ppm), indicating the predominant contribution of spin delocalization, due to a d-electron configuration derived from the 5B2 ground state. These results demonstrate for the first time that the relative contributions of the orbital ground states derived from 5E and 5B2 states to the heme electronic structure in deoxy-Mb are affected by the distortion of the porphyrin π-system exerted by chemical properties of the heme peripheral side-chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3,7-DF:

13,17-bis(2-carboxylatoethyl)-3,7-difluoro-2,8,12,18-tetramethylporphyrinatoiron(III)

2-MF:

13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethylporphyrinatoiron(III)

7-PF:

13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2,12,18-trimethyl-7-(trifluoromethyl)porphyrinatoiron(III)

Mb:

myoglobin

Mb(7-PF):

deoxy-Mb reconstituted with 7-PF

Mb(3,7-DF):

deoxy-Mb reconstituted with 3,7-DF

Mb(2-MF):

deoxy-Mb reconstituted with 2-MF

NOE:

nuclear Overhauser effect

NOESY:

nuclear Overhauser effect correlated spectroscopy

References

  1. Yamamoto Y (1998) Annu Rep NMR Spectrosc 36:1–77

    CAS  Google Scholar 

  2. La Mar GN, Satterlee JD, de Ropp JS (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic Press, New York, pp 185–298

  3. Bertini I, Luchinat C (1986) NMR of paramagnetic molecules in biological systems. Benjamin/Cummings, Menlo Park, Calif., pp 19–46

  4. Goff H, La Mar GN (1977) J Am Chem Soc 99:6599–6606

    CAS  PubMed  Google Scholar 

  5. La Mar GN, Budd DL, Goff H (1977) Biochem Biophys Res Commun 77:104–110

    PubMed  Google Scholar 

  6. Takahashi S, Lin AK-LC, Ho C (1980) Biochemistry 19:5196–5202

    CAS  PubMed  Google Scholar 

  7. Yamamoto Y, Iwafune K, Chûjô R, Inoue Y, Imai K, Suzuki T (1992) J Biochem (Tokyo) 112:414–420

    Google Scholar 

  8. La Mar GN, Davis NL, Johnson RD, Smith WS, Hauksson JB, Budd DL, Dalichow F, Langry KC, Morris IK, Smith KM (1993) J Am Chem Soc 115:3869–3876

    Google Scholar 

  9. Busse SC, Jue T (1994) Biochemistry 33:10934–10943

    CAS  PubMed  Google Scholar 

  10. La Mar GN, Dalichow F, Zhao X, Dou Y, Ikeda-Saito M, Chiu ML, Sligar SG (1994) J Biol Chem 269:29629–29635

    PubMed  Google Scholar 

  11. Bougault CM, Dou Y, Ikeda-Saito M, Langry KC, Smith KM, La Mar GN (1998) J Am Chem Soc 120:2113–2123

    Article  CAS  Google Scholar 

  12. Ma D, Musto R, Smith KM, La Mar GN (2003) J Am Chem Soc 125:8494–8504

    Article  CAS  PubMed  Google Scholar 

  13. Bertini I, Luchinat C, Turano P, Battaini G, Casella L (2003) Chem Eur J 9:2316–2322

    Article  CAS  Google Scholar 

  14. Strom ET, Underwood GR, Jurkowitz D (1972) Mol Phys 24:901–904

    CAS  Google Scholar 

  15. Eaton DR, Josey AD, Phillips WD, Benson RE (1962) Mol Phys 5:407–416

    CAS  Google Scholar 

  16. Yamamoto Y, Hirai Y, Suzuki A (2000) J Biol Inorg Chem 5:455–462

    CAS  PubMed  Google Scholar 

  17. Hirai Y, YamamotoY, Suzuki A (2000) Bull Chem Soc Jpn 73:2309–2316

    Article  CAS  Google Scholar 

  18. Toi H, Homma M, Suzuki A, Ogoshi H (1985) J Chem Soc Chem Commun 1791–1792

  19. Suzuki A, Toi H, Aoyama Y, Ogoshi H (1992) Heterocycles 33:87–90

    CAS  Google Scholar 

  20. Suzuki A, Tomizawa T, Hayashi T, Mizutani T, Ogoshi H (1996) Bull Chem Soc Jpn 69:2923–2933

    CAS  Google Scholar 

  21. Teale FWJ (1959) Biochim Biophys Acta 35:543

    CAS  Google Scholar 

  22. La Mar GN, Yamamoto Y, Jue T, Smith KM, Pandey RK (1985) Biochemistry 24:3826–3831

    PubMed  Google Scholar 

  23. La Mar GN (1979) In: Shulman RG (ed) Biological applications of magnetic resonance. Academic Press, New York, pp 305–343

  24. La Mar GN, Budd DL, Goff H (1977) Biochem Biophys Res Commun 77:104–111

    PubMed  Google Scholar 

  25. Nagai K, La Mar GN, Jue T, Bunn HF (1982) Biochemistry 21:842–847

    CAS  PubMed  Google Scholar 

  26. La Mar GN, Budd DL, Viscio DB, Smith KM, Langry KC (1978) Proc Natl Acad Sci USA 75:5755–5759

    PubMed  Google Scholar 

  27. La Mar GN, Toi H, Krishnamoorthi R (1984) J Am Chem Soc 106:6395–6401

    Google Scholar 

  28. Takano T (1977) J Mol Biol 110:569–584

    CAS  PubMed  Google Scholar 

  29. Yamamoto Y, Ôsawa A, Inoue Y, Chûjô R, Suzuki T (1990) Eur J Biochem 192:225–229

    CAS  PubMed  Google Scholar 

  30. Johnson ME, Fung LWE, Ho C (1977) J Am Chem Soc 99:1245–1250

    CAS  PubMed  Google Scholar 

  31. Hull WE, Sykes BD (1975) J Mol Biol 98:121–153

    CAS  PubMed  Google Scholar 

  32. Swift TJ (1973) In: La Mar GN, Horrocks WD Jr, Holm RH (eds) NMR of paramagnetic molecules: principles and applications. Academic Press, New York, pp 53–83

  33. La Mar GN, Smith WS, Davis NL, Budd DL, Levy MJ (1989) Biochem Biophys Res Commun 158:462–468

    PubMed  Google Scholar 

  34. Kozlowski PM, Spiro TG, Zgierski MZ (2000) J Phys Chem B 104:10659–10666

    Article  CAS  Google Scholar 

  35. Kozlowski PM, Spiro TG, Bérces A, Zgierski MZ (1998) J Phys Chem B 102:2603–2608

    Article  CAS  Google Scholar 

Download references

Acknowlewdgements

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (2), “Dynamic Control of Strongly Correlated Soft Materials” (no. 413/14045203), from the Ministry of Education, Science, Sports, Culture, and Technology. The 19F NMR and NOESY spectra were recorded on Bruker AVANCE-500 and AVANCE-600 spectrometers, respectively, at the Chemical Analysis Center, University of Tsukuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y., Nagao, S., Hirai, Y. et al. NMR investigation of the heme electronic structure in deoxymyoglobin possessing a fluorinated heme. J Biol Inorg Chem 9, 152–160 (2004). https://doi.org/10.1007/s00775-003-0508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0508-x

Keywords

Navigation