Skip to main content
Log in

A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The mechanism for extradiol cleavage in non-heme iron catechol dioxygenase was modelled theoretically via density functional theory. Based on the FeII-His,His,Glu motif observed in enzymes, an active site model complex, [Fe(acetate)(imidazole)2(catecholate)(O2)], was optimized for states with six, four and two unpaired electrons (U6, U4 and U2, respectively). The transfer of the terminal atom of the coordinated dioxygen leading to "ferryl" Fe=O intermediates spontaneously generates an extradiol epoxide. The computed barriers range from 19 kcal mol−1 on the U6 surface to ~25 kcal mol−1 on the U4 surface, with overall reaction energies of +11.6, 6.3 and 7.1 kcal mol−1 for U6, U4 and U2, respectively. The calculations for a protonated process reveal the terminal oxygen of O2 to be the thermodynamically favoured site but subsequent oxygen transfer to the catechol has a barrier of ~30–40 kcal mol−1, depending on the spin state. Instead, protonating the acetate group gives a slightly higher energy species but a subsequent barrier on the U4 surface of only 7 kcal mol−1 relative to the hydroperoxide complex. The overall exoergicity increases to 13 kcal mol−1. The favoured proton-assisted pathway does not involve significant radical character and has features reminiscent of a Criegee rearrangement which involves the participation of the aromatic ring π-orbitals in the formation of the new carbon-oxygen bond. The subsequent collapse of the epoxide, attack by the coordinated hydroxide and final product formation proceeds with an overall exoergicity of ~75 kcal mol−1 on the U4 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme 2.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Chem Rev 100:235–349

    CAS  PubMed  Google Scholar 

  2. Spence EL, Langley GJ, Bugg TDH (1996) J Am Chem Soc 118:8336–8343

    Article  CAS  Google Scholar 

  3. Sanvoisin J, Langley GJ, Bugg TDH (1995) J Am Chem Soc 117:7836–7837

    CAS  Google Scholar 

  4. Winfield CJ, Al-Mahrizy Z, Gravestock M, Bugg TDH (2000) J Chem Soc Perkin Trans 1 3277–3289

  5. Bugg TDH, Lin G (2001) Chem Commun 941–952

  6. Jo DH, Chiou YM, Que L Jr (2001) Inorg Chem 40:3181–3190

    CAS  PubMed  Google Scholar 

  7. Lange SJ, Que L Jr (1998) Curr Opin Chem Biol 2:159–172

    Article  CAS  PubMed  Google Scholar 

  8. Shu LJ, Chiou YM, Orville AM, Miller MA, Lipscomb JD, Que L Jr (1995) Biochemistry 34:6649–6659

    CAS  PubMed  Google Scholar 

  9. Lin G, Reid G, Bugg TDH (2001) J Am Chem Soc 123:5030–5039

    CAS  PubMed  Google Scholar 

  10. Baerends EJ, Bérces A, Bo C, Boerrigter PM, Cavallo L, Deng L, Dickson RM, Ellis DE, Fan L, Fischer TH, Fonseca Guerra C, van Gisbergen SJA, Groeneveld JA, Gritsenko OV, Harris FE, van den Hoek P, Jacobsen H, van Kessel G, Kootstra F, van Lenthe E, Osinga VP, Philipsen PHT, Post D, Pye CC, Ravenek W, Ros P, Schipper PRT, Schreckenbach G, Snijders JG, Sola M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visser O, van Wezenbeek E, Wiesenekker G, Wolff SK, Woo TK, Ziegler T (2000) Amsterdam density functional program. Scientific Computing and Modelling, Free University, Amsterdam

  11. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    Article  CAS  Google Scholar 

  12. Versluis L, Ziegler T (1988) J Chem Phys 88:322–328

    CAS  Google Scholar 

  13. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391

    Article  Google Scholar 

  14. Bendix J, Deeth RJ, Weyhermuller T, Bill E, Wieghardt K (2000) Inorg Chem 39:930–938

    Article  CAS  Google Scholar 

  15. Deeth RJ (1999) J Am Chem Soc 121:6074–6075

    Article  CAS  Google Scholar 

  16. Thapper A, Deeth RJ, Nordlander E (1999) Inorg Chem 38:1015–1018

    Article  CAS  PubMed  Google Scholar 

  17. Bray MR, Deeth RJ, Paget VJ, Sheen PD (1997) Int J Quantum Chem 61:85–91

    Article  CAS  Google Scholar 

  18. Bray MR, Deeth RJ, Paget VJ (1996) Prog React Kinet 21:169–214

    CAS  Google Scholar 

  19. Scherlis DA, Estrin DA (2002) Int J Quantum Chem 87:158–166

    Article  CAS  Google Scholar 

  20. Siegbahn PEM (2001) J Comput Chem 22:1634–1645

    Article  CAS  Google Scholar 

  21. Ziegler T (1995) Can J Chem 73:743–761

    CAS  Google Scholar 

  22. Bertini I, Briganti F, Mangani S, Nolting HF, Scozzafava A (1994) Biochemistry 33:10777–10784

    CAS  PubMed  Google Scholar 

  23. Noodleman L, Peng CY, Case DA, Mouesca JM (1995) Coord Chem Rev 144:199–244

    Article  CAS  Google Scholar 

  24. Kuramochi H, Noodleman L, Case DA (1997) J Am Chem Soc 119:11442–11451

    Article  CAS  Google Scholar 

  25. Bugg TDH, Sanvoisin J, Spence EL (1997) Biochem Soc Trans 25:81–85

    CAS  PubMed  Google Scholar 

  26. Bugg TDH, Winfield CJ (1998) Nat Prod Rep 15:513–530

    CAS  Google Scholar 

  27. Bencini A, Bill E, Mariotti F, Totti F, Scozzafava A, Vargas A (2000) Inorg Chem 39:1418–1425

    Article  CAS  Google Scholar 

  28. Sokolowski A, Adam B, Weyhermuller T, Kikuchi A, Hildenbrand K, Schnepf R, Hildebrandt P, Bill E, Wieghardt K (1997) Inorg Chem 36:3702–3710

    Article  CAS  PubMed  Google Scholar 

  29. Lam WWY, Bugg TDH (1994) J Chem Soc-Chem Commun 1163–1164

Download references

Acknowledgements

R.J.D. acknowledges the support of the EPSRC. The authors also thank the referees for highlighting the hydrogen bonding issue for the REST5C structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Deeth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deeth, R.J., Bugg, T.D.H. A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases. J Biol Inorg Chem 8, 409–418 (2003). https://doi.org/10.1007/s00775-002-0430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-002-0430-7

Keywords

Navigation