Skip to main content

Advertisement

Log in

Recent advances in the epigenetics of bone metabolism

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis is a common form of metabolic bone disease that is costly to treat and is primarily diagnosed on the basis of bone mineral density. As the influences of genetic lesions and environmental factors are increasingly studied in the pathological development of osteoporosis, regulated epigenetics are emerging as the important pathogenesis mechanisms in osteoporosis. Recently, osteoporosis genome-wide association studies and multi-omics technologies have revealed that susceptibility loci and the misregulation of epigenetic modifiers are key factors in osteoporosis. Over the past decade, extensive studies have demonstrated epigenetic mechanisms, such as DNA methylation, histone/chromatin modifications, and non-coding RNAs, as potential contributing factors in osteoporosis that affect disease initiation and progression. Herein, we review recent advances in epigenetics in osteoporosis, with a focus on exploring the underlying mechanisms and potential diagnostic/prognostic biomarker applications for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393:364–376

    Article  CAS  PubMed  Google Scholar 

  2. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526

    Article  PubMed  Google Scholar 

  3. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  4. Yang TL, Shen H, Liu A, Dong SS, Zhang L, Deng FY, Zhao Q, Deng HW (2020) A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 16:91–103

    Article  PubMed  Google Scholar 

  5. Report of a WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  6. Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, Vulpescu NA, Forgetta V, Kleinman A, Mohanty ST, Sergio CM, Quinn J, Nguyen-Yamamoto L, Luco AL, Vijay J, Simon MM, Pramatarova A, Medina-Gomez C, Trajanoska K, Ghirardello EJ, Butterfield NC, Curry KF, Leitch VD, Sparkes PC, Adoum AT, Mannan NS, Komla-Ebri DSK, Pollard AS, Dewhurst HF, Hassall TAD, Beltejar MG, andMe Research T, Adams DJ, Vaillancourt SM, Kaptoge S, Baldock P, Cooper C, Reeve J, Ntzani EE, Evangelou E, Ohlsson C, Karasik D, Rivadeneira F, Kiel DP, Tobias JH, Gregson CL, Harvey NC, Grundberg E, Goltzman D, Adams DJ, Lelliott CJ, Hinds DA, Ackert-Bicknell CL, Hsu YH, Maurano MT, Croucher PI, Williams GR, Bassett JHD, Evans DM, Richards JB (2019) An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 51:258–266

    Article  CAS  Google Scholar 

  7. Pagnotti GM, Styner M, Uzer G, Patel VS, Wright LE, Ness KK, Guise TA, Rubin J, Rubin CT (2019) Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol 15:339–355

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sabik OL, Farber CR (2017) Using GWAS to identify novel therapeutic targets for osteoporosis. Transl Res 181:15–26

    Article  CAS  PubMed  Google Scholar 

  9. Cheng C, Wentworth K, Shoback DM (2020) New frontiers in osteoporosis therapy. Annu Rev Med 71:277–288

    Article  CAS  PubMed  Google Scholar 

  10. Black AJ, Reid R, Reid DM, MacDonald AG, Fraser WD (2003) Effect of pregnancy on bone mineral density and biochemical markers of bone turnover in a patient with juvenile idiopathic osteoporosis. J Bone Miner Res 18(1):167–171

    Article  CAS  PubMed  Google Scholar 

  11. Al Anouti F, Taha Z, Shamim S, Khalaf K, Al Kaabi L, Alsafar H (2019) An insight into the paradigms of osteoporosis: from genetics to biomechanics. Bone Rep 11:100216

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hendrickx G, Boudin E, Van Hul W (2015) A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 11:462–474

    Article  PubMed  Google Scholar 

  13. Letarouilly JG, Broux O, Clabaut A (2019) New insights into the epigenetics of osteoporosis. Genomics 111:793–798

    Article  CAS  PubMed  Google Scholar 

  14. Michou L (2018) Epigenetics of bone diseases. Joint Bone Spine 85:701–707

    Article  CAS  PubMed  Google Scholar 

  15. Vrtacnik P, Marc J, Ostanek B (2014) Epigenetic mechanisms in bone. Clin Chem Lab Med 52:589–608

    Article  CAS  PubMed  Google Scholar 

  16. Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571:489–499

    Article  CAS  PubMed  Google Scholar 

  17. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  18. Skvortsova K, Iovino N, Bogdanovic O (2018) Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol 19:774–790

    Article  CAS  PubMed  Google Scholar 

  19. Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T, Nakamura T, Kato S, Yamamoto M, Takayanagi H, Ishii M (2015) DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 21:281–287

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Wang H, Chen X, Li X, Wang G, Jie Z, Zhao X, Sun X, Huang H, Fan S, Xie Z, Wang J (2021) Oxidative stress-induced hypermethylation of KLF5 promoter mediated by DNMT3B impairs osteogenesis by diminishing the interaction with β-Catenin. Antioxid Redox Signal 35(1):1–20

    Article  PubMed  CAS  Google Scholar 

  21. Wang C, Shan S, Wang C, Wang J, Li J, Hu G, Dai K, Li Q, Zhang X (2017) Mechanical stimulation promote the osteogenic differentiation of bone marrow stromal cells through epigenetic regulation of Sonic Hedgehog. Exp Cell Res 352:346–356

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Zhao J, Ma JX, Li GM, Zhang Y, Xing GS, Liu J, Ma XL (2018) Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. Bone 111:82–91

    Article  PubMed  CAS  Google Scholar 

  23. Li Y, Wang L, Zhang M, Huang K, Yao Z, Rao P, Cai X, Xiao J (2020) Advanced glycation end products inhibit the osteogenic differentiation potential of adipose-derived stem cells by modulating Wnt/β-catenin signalling pathway via DNA methylation. Cell Prolif 53:e12834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng S, Shi S, Tao G, Li Y, Xiao D, Wang L, He Q, Cai X, Xiao J (2021) JKAMP inhibits the osteogenic capacity of adipose-derived stem cells in diabetic osteoporosis by modulating the Wnt signaling pathway through intragenic DNA methylation. Stem Cell Res Ther 12:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen X, Zhu X, Wei A, Chen F, Gao Q, Lu K, Jiang Q, Cao W (2021) Nrf2 epigenetic derepression induced by running exercise protects against osteoporosis. Bone Res 9:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang M (2018) Epigenetic mechanisms and hypertension. Hypertension 72:1244–1254

    Article  CAS  PubMed  Google Scholar 

  27. Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fei Q, Bai X, Lin J, Meng H, Yang Y, Guo A (2018) Identification of aberrantly expressed long non-coding RNAs in postmenopausal osteoporosis. Int J Mol Med 41:3537–3550

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Reppe S, Lien TG, Hsu YH, Gautvik VT, Olstad OK, Yu R, Bakke HG, Lyle R, Kringen MK, Glad IK, Gautvik KM (2017) Distinct DNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics 12:674–687

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fernandez-Rebollo E, Eipel M, Seefried L, Hoffmann P, Strathmann K, Jakob F, Wagner W (2018) Primary osteoporosis is not reflected by disease-specific DNA methylation or accelerated epigenetic age in blood. J Bone Miner Res 33:356–361

    Article  CAS  PubMed  Google Scholar 

  31. Reppe S, Noer A, Grimholt RM, Halldorsson BV, Medina-Gomez C, Gautvik VT, Olstad OK, Berg JP, Datta H, Estrada K, Hofman A, Uitterlinden AG, Rivadeneira F, Lyle R, Collas P, Gautvik KM (2015) Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res 30:249–256

    Article  CAS  PubMed  Google Scholar 

  32. Lv H, Ma X, Che T, Chen Y (2011) Methylation of the promoter A of estrogen receptor alpha gene in hBMSC and osteoblasts and its correlation with homocysteine. Mol Cell Biochem 355:35–45

    Article  CAS  PubMed  Google Scholar 

  33. Raje MM, Ashma R (2019) Epigenetic regulation of BMP2 gene in osteoporosis: a DNA methylation study. Mol Biol Rep 46:1667–1674

    Article  CAS  PubMed  Google Scholar 

  34. Wang P, Cao Y, Zhan D, Wang D, Wang B, Liu Y, Li G, He W, Wang H, Xu L (2018) Influence of DNA methylation on the expression of OPG/RANKL in primary osteoporosis. Int J Med Sci 15:1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jintaridth P, Tungtrongchitr R, Preutthipan S, Mutirangura A (2013) Hypomethylation of Alu elements in post-menopausal women with osteoporosis. PLoS ONE 8(8):e70386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Article  CAS  PubMed  Google Scholar 

  37. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  CAS  PubMed  Google Scholar 

  38. Zhang YX, Sun HL, Liang H, Li K, Fan QM, Zhao QH (2015) Dynamic and distinct histone modifications of osteogenic genes during osteogenic differentiation. J Biochem 158:445–457

    CAS  PubMed  Google Scholar 

  39. Zhang Y, Ma C, Liu X, Wu Z, Yan P, Ma N, Fan Q, Zhao Q (2015) Epigenetic landscape in PPARγ2 in the enhancement of adipogenesis of mouse osteoporotic bone marrow stromal cell. Biochim Biophys Acta 1852:2504–2516

    Article  CAS  PubMed  Google Scholar 

  40. Ling M, Huang P, Islam S, Heruth DP, Li X, Zhang LQ, Li DY, Hu Z, Ye SQ (2017) Epigenetic regulation of Runx2 transcription and osteoblast differentiation by nicotinamide phosphoribosyltransferase. Cell Biosci 7:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tang Z, Xu T, Li Y, Fei W, Yang G, Hong Y (2020) Inhibition of CRY2 by STAT3/miRNA-7-5p promotes osteoblast differentiation through upregulation of CLOCK/BMAL1/P300 expression. Mol Ther Nucleic Acids 19:865–876

    Article  CAS  PubMed  Google Scholar 

  42. Jing H, Su X, Gao B, Shuai Y, Chen J, Deng Z, Liao L, Jin Y (2018) Epigenetic inhibition of Wnt pathway suppresses osteogenic differentiation of BMSCs during osteoporosis. Cell Death Dis 9:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang P, Liu Y, Jin C, Zhang M, Lv L, Zhang X, Liu H, Zhou Y (2016) Histone H3K9 acetyltransferase PCAF is essential for osteogenic differentiation through bone morphogenetic protein signaling and may be involved in osteoporosis. Stem Cells 34:2332–2341

    Article  CAS  PubMed  Google Scholar 

  44. Lin CH, Li NT, Cheng HS, Yen ML (2018) Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions. J Cell Mol Med 22:786–796

    CAS  PubMed  Google Scholar 

  45. Wang J, Wang CD, Zhang N, Tong WX, Zhang YF, Shan SZ, Zhang XL, Li QF (2016) Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis 7:e2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. You W, Song L, Wang K (2018) Acetylation of GATA4 on lysine residue K313 promotes osteoblastic cells growth. Cell Physiol Biochem 46:269–278

    Article  CAS  PubMed  Google Scholar 

  47. Wein MN, Spatz J, Nishimori S, Doench J, Root D, Babij P, Nagano K, Baron R, Brooks D, Bouxsein M, Pajevic PD, Kronenberg HM (2015) HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J Bone Miner Res 30:400–411

    Article  PubMed  Google Scholar 

  48. Wang FS, Chen YS, Ko JY, Kuo CW, Ke HJ, Hsieh CK, Wang SY, Kuo PC, Jahr H, Lian WS (2020) Bromodomain protein BRD4 accelerates glucocorticoid dysregulation of bone mass and marrow adiposis by modulating H3K9 and Foxp1. Cells 9(6):1500

    Article  CAS  PubMed Central  Google Scholar 

  49. Lee ZH, Kim HJ, Ryoo HM (2015) A novel osteogenic activity of suberoylanilide hydroxamic acid is synergized by BMP-2. J Bone Metab 22:51–56

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dudakovic A, Evans JM, Li Y, Middha S, McGee-Lawrence ME, van Wijnen AJ, Westendorf JJ (2013) Histone deacetylase inhibition promotes osteoblast maturation by altering the histone H4 epigenome and reduces Akt phosphorylation. J Biol Chem 288:28783–28791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen W, Zhu G, Hao L, Wu M, Ci H, Li YP (2013) C/EBPalpha regulates osteoclast lineage commitment. Proc Natl Acad Sci U S A 110:7294–7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li J, Zhang N, Huang X, Xu J, Fernandes JC, Dai K, Zhang X (2013) Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis 4:e332

    Article  Google Scholar 

  53. Zhao QH, Wang SG, Liu SX, Li JP, Zhang YX, Sun ZY, Fan QM, Tian JW (2013) PPARgamma forms a bridge between DNA methylation and histone acetylation at the C/EBPalpha gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells. Febs J 280:5801–5814

    Article  CAS  PubMed  Google Scholar 

  54. Vrtacnik P, Zupan J, Mlakar V, Kranjc T, Marc J, Kern B, Ostanek B (2018) Epigenetic enzymes influenced by oxidative stress and hypoxia mimetic in osteoblasts are differentially expressed in patients with osteoporosis and osteoarthritis. Sci Rep 8:16215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dudakovic A, Camilleri ET, Riester SM, Paradise CR, Gluscevic M, O’Toole TM, Thaler R, Evans JM, Yan H, Subramaniam M, Hawse JR, Stein GS, Montecino MA, McGee-Lawrence ME, Westendorf JJ, van Wijnen AJ (2016) Enhancer of zeste homolog 2 inhibition stimulates bone formation and mitigates bone loss caused by ovariectomy in skeletally mature mice. J Biol Chem 291:24594–2460656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jing H, Liao L, An Y, Su X, Liu S, Shuai Y, Zhang X, Jin Y (2016) Suppression of EZH2 Prevents the Shift of Osteoporotic MSC Fate to Adipocyte and Enhances Bone Formation During Osteoporosis. Mol Ther 24:217–229

    Article  CAS  PubMed  Google Scholar 

  57. Galvan ML, Paradise CR, Kubrova E, Jerez S, Khani F, Thaler R, Dudakovic A, van Wijnen AJ (2021) Multiple pharmacological inhibitors targeting the epigenetic suppressor enhancer of zeste homolog 2 (Ezh2) accelerate osteoblast differentiation. Bone 150:115993

    Article  CAS  PubMed  Google Scholar 

  58. Fang C, Qiao Y, Mun SH, Lee MJ, Murata K, Bae S, Zhao B, Park-Min KH, Ivashkiv LB (2016) Cutting edge: EZH2 promotes osteoclastogenesis by epigenetic silencing of the negative regulator IRF8. J Immunol 196:4452–4456

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y, Deng P, Liu Y, Wu Y, Chen Y, Guo Y, Zhang S, Zheng X, Zhou L, Liu W, Li Q, Lin W, Qi X, Ou G, Wang C, Yuan Q (2020) Alpha-ketoglutarate ameliorates age-related osteoporosis via regulating histone methylations. Nat Commun 11:5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee S, Kim HS, Kim MJ, Min KY, Choi WS, You JS (2021) Glutamine metabolite α-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation. Bone 145:115836

    Article  CAS  PubMed  Google Scholar 

  61. Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park NH, Wang CY (2012) Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 11:50–6158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qi Q, Wang Y, Wang X, Yang J, Xie Y, Zhou J, Li X, Wang B (2020) Histone demethylase KDM4A regulates adipogenic and osteogenic differentiation via epigenetic regulation of C/EBPalpha and canonical Wnt signaling. Cell Mol Life Sci 77:2407–2421

    Article  CAS  PubMed  Google Scholar 

  63. Wang C, Wang J, Li J, Hu G, Shan S, Li Q, Zhang X (2016) KDM5A controls bone morphogenic protein 2-induced osteogenic differentiation of bone mesenchymal stem cells during osteoporosis. Cell Death Dis 7:2335

    Article  CAS  Google Scholar 

  64. Yang X, Wang G, Wang Y, Zhou J, Yuan H, Li X, Liu Y, Wang B (2019) Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPα and canonical Wnt signalling. J Cell Mol Med 23:2149–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gao Y, Ge W (2018) The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis 9:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  CAS  PubMed  Google Scholar 

  67. Bellavia D, De Luca A, Carina V, Costa V, Raimondi L, Salamanna F, Alessandro R, Fini M, Giavaresi G (2019) Deregulated miRNAs in bone health: epigenetic roles in osteoporosis. Bone 122:52–75

    Article  CAS  PubMed  Google Scholar 

  68. Song H, Li X, Zhao Z, Qian J, Wang Y, Cui J, Weng W, Cao L, Chen X, Hu Y, Su J (2019) Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett 19:3040–3048

    Article  CAS  PubMed  Google Scholar 

  69. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH (2015) MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 125:1509–1522

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lai P, Song Q, Yang C, Li Z, Liu S, Liu B, Li M, Deng H, Cai D, Jin D, Liu A, Bai X (2016) Loss of Rictor with aging in osteoblasts promotes age-related bone loss. Cell Death Dis 7:e2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T, Tu ML, Peng H, Lu Q, Liu Q, He HB, Jiang TJ, Lei MX, Wan M, Cao X, Luo XH (2017) MiR-497 approximately 195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1alpha activity. Nat Commun 8:16003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang Y, Zhang L, Tu T, Li Y, Murray D, Tu Q, Chen JJ (2018) MicroRNA-99a is a novel regulator of KDM6B-mediated osteogenic differentiation of BMSCs. J Cell Mol Med 22:2162–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Y, Fan L, Hu J, Zhang L, Liao L, Liu S, Wu D, Yang P, Shen L, Chen J, Jin Y (2015) MiR-26a rescues bone regeneration deficiency of mesenchymal stem cells derived from osteoporotic mice. Mol Ther 23:1349–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ren H, Yu X, Shen G, Zhang Z, Shang Q, Zhao W, Huang J, Yu P, Zhan M, Lu Y, Liang Z, Tang J, Liang YZ, Yang Z, Jiang X (2019) miRNA-seq analysis of human vertebrae provides insight into the mechanism underlying GIOP. Bone 120:371–386

    Article  CAS  PubMed  Google Scholar 

  75. Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, Zhen W, Yang D, Lu W, Guan M, Peng S (2020) Circulating MicroRNA-19b identified from osteoporotic vertebral compression fracture patients increases bone formation. J Bone Miner Res 35:306–316

    Article  CAS  PubMed  Google Scholar 

  76. Makitie RE, Hackl M, Niinimaki R, Kakko S, Grillari J, Makitie O (2018) Altered MicroRNA profile in osteoporosis caused by impaired WNT signaling. J Clin Endocrinol Metab 103:1985–1996

    Article  PubMed  Google Scholar 

  77. Hardy T, Mann DA (2016) Epigenetics in liver disease: from biology to therapeutics. Gut 65:1895–1905

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y, Chen B, Li D, Zhou X, Chen Z (2019) LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Pathol Res Pract 215:525–531

    Article  CAS  PubMed  Google Scholar 

  79. Feng J, Wang JX, Li CH (2019) LncRNA GAS5 overexpression alleviates the development of osteoporosis through promoting osteogenic differentiation of MSCs via targeting microRNA-498 to regulate RUNX2. Eur Rev Med Pharmacol Sci 23:7757–7765

    CAS  PubMed  Google Scholar 

  80. Wu ZH, Huang KH, Liu K, Wang GT, Sun Q (2018) DGCR5 induces osteogenic differentiation by up-regulating Runx2 through miR-30d-5p. Biochem Biophys Res Commun 505:426–431

    Article  CAS  PubMed  Google Scholar 

  81. Yu H, Zhou W, Yan W, Xu Z, Xie Y, Zhang P (2019) LncRNA CASC11 is upregulated in postmenopausal osteoporosis and is correlated with TNF-alpha. Clin Interv Aging 14:1663–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen JJ, Zhang CH, Chen ZW, Wang ZX, Yang DC, Zhang FL, Feng KH (2019) LncRNA HOTAIR inhibited osteogenic differentiation of BMSCs by regulating Wnt/beta-catenin pathway. Eur Rev Med Pharmacol Sci 23:7232–7246

    PubMed  Google Scholar 

  83. Han Y, Liu C, Lei M, Sun S, Zheng W, Niu Y, Xia X (2019) LncRNA TUG1 was upregulated in osteoporosis and regulates the proliferation and apoptosis of osteoclasts. J Orthop Surg Res 14:416

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xiaoling G, Shuaibin L, Kailu L (2020) MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Med Genet 21:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wang Q, Li Y, Zhang Y, Ma L, Lin L, Meng J, Jiang L, Wang L, Zhou P, Zhang Y (2017) LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother 89:1178–1186

    Article  CAS  PubMed  Google Scholar 

  86. Chen S, Jia L, Zhang S, Zheng Y, Zhou Y (2018) DEPTOR regulates osteogenic differentiation via inhibiting MEG3-mediated activation of BMP4 signaling and is involved in osteoporosis. Stem Cell Res Ther 9:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu C, Cao Z, Bai Y, Dou C, Gong X, Liang M, Dong R, Quan H, Li J, Dai J, Kang F, Zhao C, Dong S (2019) LncRNA AK077216 promotes RANKL-induced osteoclastogenesis and bone resorption via NFATc1 by inhibition of NIP45. J Cell Physiol 234:1606–1617

    Article  CAS  PubMed  Google Scholar 

  88. Chen RS, Zhang XB, Zhu XT, Wang CS (2019) LncRNA Bmncr alleviates the progression of osteoporosis by inhibiting RANML-induced osteoclast differentiation. Eur Rev Med Pharmacol Sci 23:9199–9206

    PubMed  Google Scholar 

  89. Li CJ, Xiao Y, Yang M, Su T, Sun X, Guo Q, Huang Y, Luo XH (2018) Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest 128:5251–5266

    Article  PubMed  PubMed Central  Google Scholar 

  90. Li D, Tian Y, Yin C, Huai Y, Zhao Y, Su P, Wang X, Pei J, Zhang K, Yang C, Dang K, Jiang S, Miao Z, Li M, Hao Q, Zhang G, Qian A (2019) Silencing of lncRNA AK045490 promotes osteoblast differentiation and bone formation via beta-Catenin/TCF1/Runx2 signaling Axis. Int J Mol Sci 20:6229

    Article  CAS  PubMed Central  Google Scholar 

  91. Yang L, Li Y, Gong R, Gao M, Feng C, Liu T, Sun Y, Jin M, Wang D, Yuan Y, Yan G, He M, Idiiatullina E, Ma W, Han Z, Zhang L, Huang Q, Ding F, Cai B, Yang F (2019) The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther 27:394–410

    Article  CAS  PubMed  Google Scholar 

  92. Yang X, Yang J, Lei P, Wen T (2019) LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY) 11:8777–8791

    Article  CAS  Google Scholar 

  93. Yin C, Tian Y, Yu Y, Wang H, Wu Z, Huang Z, Zhang Y, Li D, Yang C, Wang X, Li Y, Qian A (2019) A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 234:11524–11536

    Article  CAS  PubMed  Google Scholar 

  94. Chen XF, Zhu DL, Yang M, Hu WX, Duan YY, Lu BJ, Rong Y, Dong SS, Hao RH, Chen JB, Chen YX, Yao S, Thynn HN, Guo Y, Yang TL (2018) An osteoporosis risk SNP at 1p36.12 acts as an allele-specific enhancer to modulate LINC00339 expression via long-range loop formation. Am J Hum Genet 102:776–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mei B, Wang Y, Ye W, Huang H, Zhou Q, Chen Y, Niu Y, Zhang M, Huang Q (2019) LncRNA ZBTB40-IT1 modulated by osteoporosis GWAS risk SNPs suppresses osteogenesis. Hum Genet 138:151–166

    Article  CAS  PubMed  Google Scholar 

  96. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691

    Article  CAS  PubMed  Google Scholar 

  97. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, Robinson DR, Nesvizhskii AI, Chinnaiyan AM (2019) The landscape of circular RNA in cancer. Cell 176:869–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin D, Wu X, Yu H, Jiang L, Zhou P, Yao X, Meng J, Wang L, Zhang M, Zhang Y (2018) Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis. Am J Transl Res 10:1498–1510

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu L, Liu Y (2019) circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun 516:546–550

    Article  CAS  PubMed  Google Scholar 

  100. Huang Y, Xie J, Li E (2019) Comprehensive circular RNA profiling reveals circ_0002060 as a potential diagnostic biomarkers for osteoporosis. J Cell Biochem 120:15688–15694

    Article  CAS  PubMed  Google Scholar 

  101. Zhao K, Zhao Q, Guo Z, Chen Z, Hu Y, Su J, Chen L, He Z, Cai X, Chen M, Zheng L, Wang W, Wang Q (2018) Hsa_Circ_0001275: a potential novel diagnostic biomarker for postmenopausal osteoporosis. Cell Physiol Biochem 46:2508–2516

    Article  CAS  PubMed  Google Scholar 

  102. Ouyang Z, Tan T, Zhang X, Wan J, Zhou Y, Jiang G, Yang D, Guo X, Liu T (2019) CircRNA hsa_circ_0074834 promotes the osteogenesis-angiogenesis coupling process in bone mesenchymal stem cells (BMSCs) by acting as a ceRNA for miR-942-5p. Cell Death Dis 10:932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yin Q, Wang J, Fu Q, Gu S, Rui Y (2018) CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteoporosis. J Cell Mol Med 22:6112–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang L, Zeng Z, Kang N, Yang JC, Wei X, Hai Y (2019) Circ-VANGL1 promotes the progression of osteoporosis by absorbing miRNA-217 to regulate RUNX2 expression. Eur Rev Med Pharmacol Sci 23:949–957

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohua Xu or Duan Ma.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ma, J., Xu, G. et al. Recent advances in the epigenetics of bone metabolism. J Bone Miner Metab 39, 914–924 (2021). https://doi.org/10.1007/s00774-021-01249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-021-01249-8

Keywords

Navigation