Skip to main content

Advertisement

Log in

Simulated evolution of the vertebral body based on basic multicellular unit activities

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

A numerical model based on the theory of bone remodeling is proposed to predict the evolution of trabecular bone architecture within the vertebral body and to investigate the process of degeneration in vertebral bone. In this study, particular attention is paid on the description of microstructure changes during the aging process. To take into account the effect of basic multicellular units (BMUs), a set of computational algorithms has been developed. It is assumed that BMU activation probability depends on the state of damaged bone tissue (damage accumulation, ω), which is evaluated according to previous research concerning bone fatigue damage. Combining these algorithms with the finite-element method (FEM), the microstructure of vertebral bone has been predicted for up to 8 simulated years. Moreover, biomechanical material properties have been monitored to investigate the changes of vertebral bone with age. This study shows that the simulation based on BMU activities has the potential to define and predict the morphological evolution of the vertebral body. It can be concluded that the novel algorithms incorporating the coupled effects of both adaptive remodeling and microdamage remodeling could be utilized to gain greater insight into the mechanism of bone loss in the elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McDonnell P, McHugh PE, O’Mahoney D (2007) Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 35:170–189

    Article  PubMed  CAS  Google Scholar 

  2. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  PubMed  CAS  Google Scholar 

  3. Homminga J, Van-Rietbergen B, Lochmuller EM, Weinans H (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone (NY) 34:510–516

    CAS  Google Scholar 

  4. Zhu XH, Gong H, Gao BZ (2005) The application of topology optimization on the quantitative description of the external shape of bone structure. J Biomech 38:1612–1620

    Article  Google Scholar 

  5. Tanck E, Ruimerman R, Huiskes R (2006) Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics. J Biomech 39:2631–2637

    Article  PubMed  CAS  Google Scholar 

  6. Ruimerman R, Hilbers P, Rietbergen Bv, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38:931–941

    Article  PubMed  CAS  Google Scholar 

  7. Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self organizational control process. J Biomech 27:1389–1394

    Article  PubMed  CAS  Google Scholar 

  8. Martin RB (2002) Is all cortical bone remodeling initiated by microdamage? Bone (NY) 30:8–13

    CAS  Google Scholar 

  9. Fazzalari NL, Forwood MR, Smith K, Manthey BA (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone (NY) 22:381–388

    CAS  Google Scholar 

  10. McNamara LM, Prendergast PJ (2007) Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 40:1381–1391

    Article  PubMed  Google Scholar 

  11. Taylor D, Hazenberg JG, Lee TC (2007) Living with cracks: damage and repair in human bone. Nat Mater 6:263–268

    Article  PubMed  CAS  Google Scholar 

  12. Zhu XH, Gong H, Zhu D, Gao BZ (2002) A study of the effect of non-linearities in the equation of bone remodeling. J Biomech 35:951–960

    Article  Google Scholar 

  13. Gong H, Zhang M, Zhang H, Zhu D (2006) Theoretical analysis of contributions of disuse, basic multicellular unit activation threshold, and osteoblastic formation threshold to changes in bone mineral density at menopause. J Bone Miner Metab 24:386–394

    Article  PubMed  Google Scholar 

  14. Carter DR, Hayes WC, Schurman DJ (1976) Fatigue of compact bone. II. Effects of microstructure and density. J Biomech 9:211–214

    Article  PubMed  CAS  Google Scholar 

  15. Ruimerman R, Huiskes R (2005) Development of a unifying theory for mechanical adaptation and maintenance of trabecular bone. Theor Issues Ergon Sci 6:225–238

    Article  Google Scholar 

  16. Langton CM, Haire TJ, Ganney PS, Dobson CA (2000) Stochastically simulated assessment of anabolic treatment following varying degrees of cancellous bone resorption. Bone (NY) 27:111–118

    CAS  Google Scholar 

  17. Langton CM, Haire TJ, Ganney PS, Dobson CA (1998) Dynamic stochastic simulation of cancellous bone resorption. Bone (NY) 22:375–380

    CAS  Google Scholar 

  18. Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  PubMed  CAS  Google Scholar 

  19. Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13:503–512

    Article  PubMed  CAS  Google Scholar 

  20. Huiskes R, Ruimerman R, Lenthe GHV, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature (Lond) 405:704–706

    Article  CAS  Google Scholar 

  21. Chen G, Pettet GJ, Pearcy M, McElwain DLS (2007) Modelling external bone adaptation using evolutionary structural optimisation. Biomechan Model Mechanobiol 6:275–285

    Article  CAS  Google Scholar 

  22. Gong H, Zhang M, Qin L, Hou Y (2007) Regional variations in the apparent and tissue-level mechanical parameters of vertebral trabecular bone with aging using micro-finite element analysis. Ann Biomed Eng 35:1622–1631

    Article  PubMed  Google Scholar 

  23. Gong H (2003) Research on quantitative bone functional adaptation theory and mechanical simulation of osteoporosis. Ph.D. Thesis, Jilin University, Changchun

  24. Thomsen JS, Ebbesen EN, Mosekilde LI (2002) Zone-dependent changes in human vertebral trabecular bone: clinical implications. Bone (NY) 30:664–669

    Google Scholar 

  25. Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modelling problem. Anat Rec 226:403–413

    Article  PubMed  CAS  Google Scholar 

  26. Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec 226:414–422

    Article  PubMed  CAS  Google Scholar 

  27. Roberts WE, Roberts JA, Epker BN, Burr DB (2006) Remodeling of mineralized tissues. Part I: The Frost legacy. Semin Orthod 12:216–237

    Article  Google Scholar 

  28. Waarsing JH, Day JS, Verhaar JA (2006) Bone loss dynamics result in trabecular alignment in aging and ovariectomized rats. J Orthop Res 24:926–935

    Article  PubMed  Google Scholar 

  29. Taylor D, Lee TC (2003) Microdamage and mechanical behaviour: predicting failure and remodelling in compact bone. J Anat 203:203–211

    Article  PubMed  CAS  Google Scholar 

  30. Hazenberg JG, Taylor D, Lee TC (2007) The role of osteocytes and bone microstructure in preventing osteoporotic fractures. Osteoporos Int 18:1–8

    Article  PubMed  Google Scholar 

  31. Martin RB (2007) Targeted bone remodeling involves BMU steering as well as activation. Bone (NY) 40:1574–1580

    CAS  Google Scholar 

  32. Garcίa-Aznar JM, Rueberg T, Doblare M (2005) A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity. Biomechan Model Mechanobiol 4:147–167

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant No. 10832012) and partially supported by the National Nature Science Foundation of China (Grant No. 10925208, 10902010, 11072087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqiu Zhang.

About this article

Cite this article

Wang, C., Zhang, C., Han, J. et al. Simulated evolution of the vertebral body based on basic multicellular unit activities. J Bone Miner Metab 29, 466–476 (2011). https://doi.org/10.1007/s00774-010-0244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-010-0244-6

Keywords

Navigation