Skip to main content
Log in

Novel mutation of TCIRG1 and clinical pictures of two infantile malignant osteopetrosis patients

  • Short Communication
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Infantile malignant osteopetrosis (IMO) (OMIM 259700) is a lethal autosomal recessive disease. The underlying gene in most IMO patients is TCIRG1. This codes for the TCIRG1 protein involved in the cellular proton pump, which is highly expressed on surfaces of osteoclasts. We have characterized a family comprising two affected siblings born to healthy parents. The sister and her younger brother both presented classical X-ray images of IMO at 17 h and 16 weeks, respectively, after birth, and both died after the appearance of fever and flu-like symptoms months later. Radiographs revealed normal bone density in both parents. Mutation detection of the TCIRG1 gene was performed in the boy and the parents. The novel mutation c.242delC (p.Pro81ArgfsX85) and the known mutation c.1114C>T (p.Gln372X) were both identified in the boy. Both mutations are predicted to introduce premature stop codons, with deletion of 666 amino acids from the C terminus of the TCIRG1 protein of one allele and 459 from the other. Both mutations involve loss of part or the whole of the ATPase V0-complex domain of the protein. The father carries the c.242delC (p.Pro81ArgfsX85) mutation and the mother the c.1114C>T (p.Gln372X). Our findings provide new data for pre- and post-natal genetic diagnosis and identification of heterozygous carriers of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Loría-Cortés R, Quesada-Calvo E, Cordero-Chaverri C (1977) Osteopetrosis in children: a report of 26 cases. J Pediatr 91:43–47

    Article  PubMed  Google Scholar 

  2. Tolar J, Teitelbaum SL, Orchard PJ (2004) Osteopetrosis. N Engl J Med 351:2839–2849

    Article  PubMed  Google Scholar 

  3. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C (2000) Mutations in the a3 subunit of the vacuolar H+-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063

    Article  PubMed  CAS  Google Scholar 

  4. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    Article  PubMed  CAS  Google Scholar 

  5. Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A et al (2007) Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 39:960–962

    Article  PubMed  CAS  Google Scholar 

  6. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE (1991) Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His-Tyr): complete structure of the normal human CA II gene. Am J Hum Genet 49:1082–1090

    PubMed  CAS  Google Scholar 

  7. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    Article  PubMed  CAS  Google Scholar 

  8. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, Villa A, Vacher J (2003) Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 9:399–406

    Article  PubMed  CAS  Google Scholar 

  9. Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F, Jacobs R, Peruzzi B, Teti A, Helfrich MH, Rogers MJ, Villa A, Van Hul W (2007) Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 117:919–930

    Article  PubMed  Google Scholar 

  10. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS et al (2008) Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 83:64–76

    Article  PubMed  CAS  Google Scholar 

  11. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I et al (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773

    Article  PubMed  CAS  Google Scholar 

  12. Scimeca JC, Quincey D, Parrinello H, Romatet D, Grosgeorge J, Gaudray P, Philip N, Fischer A, Carle GF (2003) Novel mutations in the TCIRG1 gene encoding the a3 subunit of the vacuolar proton pump in patients affected by infantile malignant osteopetrosis. Hum Mutat 21:151–157

    Article  PubMed  CAS  Google Scholar 

  13. Susani L, Pangrazio A, Sobacchi C, Taranta A, Mortier G, Savarirayan R, Villa A, Orchard P, Vezzoni P, Albertini A, Frattini A, Pagani F (2004) TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat 24:225–235

    Article  PubMed  CAS  Google Scholar 

  14. Baron R, Neff L, Louvard D, Courtoy PJ (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101:2210–2222

    Article  PubMed  CAS  Google Scholar 

  15. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  PubMed  CAS  Google Scholar 

  16. Manolson MF, Yu H, Chen W, Yao Y, Li K, Lees RL, Heersche JN (2003) The a3 isoform of the 100-kDa V-ATPase subunit is highly but differentially expressed in large (≥10 nuclei) and small (≤5 nuclei) osteoclasts. J Biol Chem 278:49271–49278

    Article  PubMed  CAS  Google Scholar 

  17. Jaing TH, Hou JW, Chen SH, Huang IA, Wang CJ, Lee WI (2006) Successful unrelated mismatched cord blood transplantation in a child with malignant infantile osteopetrosis. Pediatr Transplant 10:629–631

    Article  PubMed  Google Scholar 

  18. Stark Z, Savarirayan R (2009) Osteopetrosis. Orphanet J Rare Dis 4:5

    Article  PubMed  Google Scholar 

  19. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12

    Article  Google Scholar 

  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  21. Keshava PT, Goel R, Kandasamy K, Keerthikumar S, Kumar S et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772

    Article  Google Scholar 

  22. Zhang MH, Yu LC (2002) Appendix: reference ranges for laboratory tests. In: Hu YM, Jiang ZF (eds) Zhu Futang textbook of pediatrics (in Chinese), 7th edn. People’s Medical Publishing House, Beijing, pp 2684–2685

    Google Scholar 

  23. Souraty N, Noun P, Djambas-Khayat C, Chouery E, Pangrazio A, Villa A, Lefranc G, Frattini A, Megarbane A (2007) Molecular study of six families originating from the Middle East and presenting with autosomal recessive osteopetrosis. Eur J Med Genet 50:188–199

    Article  PubMed  Google Scholar 

  24. Li YP, Chen W, Stashenko P (1996) Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. Biochem Biophys Res Commun 218:813–821

    Article  PubMed  CAS  Google Scholar 

  25. Utku N, Heinemann T, Tullius SG, Bulwin GC, Beinke S, Blumberg RS, Beato F, Randall J, Kojima R, Busconi L, Robertson ES, Schülein R, Volk HD, Milford EL, Gullans SR (1998) Prevention of acute allograft rejection by antibody targeting of TIRC7, a novel T cell membrane protein. Immunity 9:509–518

    Article  PubMed  CAS  Google Scholar 

  26. Strachan T, Read A (2010) Human molecular genetics, 4th edn. Garland Science, New York

    Google Scholar 

  27. Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC (2006) ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440:220–223

    Article  PubMed  CAS  Google Scholar 

  28. Cleiren E, Bénichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, de Vernejoul MC, Van Hul W (2001) Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10:2861–2867

    Article  PubMed  CAS  Google Scholar 

  29. de Varnejoul MC, Schulz A, Kornak U (2007) GENEReviews: CLCN7-related osteopetrosis. http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=clcn7

  30. Zhang ZL, He JW, Zhang H, Hu WW, Fu WZ, Gu JM, Yu JB, Gao G, Hu YQ, Li M, Liu YJ (2009) Identification of the CLCN7 gene mutations in two Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab 27:444–451

    Article  PubMed  Google Scholar 

  31. Chu K, Koller DL, Snyder R, Fishburn T, Lai D, Waguespack SG, Foroud T, Econs MJ (2005) Analysis of variation in expression of autosomal dominant osteopetrosis type 2: searching for modifier genes. Bone 37:655–661

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Wang.

About this article

Cite this article

Yuan, P., Yue, Z., Sun, L. et al. Novel mutation of TCIRG1 and clinical pictures of two infantile malignant osteopetrosis patients. J Bone Miner Metab 29, 251–256 (2011). https://doi.org/10.1007/s00774-010-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-010-0228-6

Keywords

Navigation