Skip to main content

Advertisement

Log in

Standardisation and reporting for nucleic acid quantification

  • Review
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

The real-time quantitative polymerase chain reaction (qPCR) is probably the most common molecular technique in use today, having become the method of choice for nucleic acid detection and quantification and underpinning applications ranging from basic research through biotechnology and forensic applications to clinical diagnostics. This key technology relies on fluorescence to detect and quantify nucleic acid amplification products, and its homogeneous assay format has transformed legacy polymerase chain reaction (PCR) from a low-throughput qualitative gel-based technique to a frequently automated, rapid, high-throughput quantitative technology. However, the enormous range of protocols together with frequently inappropriate pre-assay conditions, poor assay design and unsuitable data analysis methodologies are impeding its status as a mature, ‘gold standard’ technology. This, combined with inconsistent and insufficient reporting procedures, has resulted in the widespread publication of data that can be misleading, in particular when this technology is used to quantify cellular mRNA or miRNA levels by RT-qPCR. This affects the integrity of the scientific literature, with consequences for not only basic research, but with potentially major implications for the potential development of molecular diagnostic and prognostic monitoring tools. These issues have been addressed by a set of guidelines that propose a minimum standard for the provision of information for qPCR experiments (‘MIQE’). MIQE aims to systematise current variable qPCR methods into a more consistent format that will encourage detailed auditing of experimental detail, data analysis and reporting principles. General implementation of these guidelines is an important requisite for the maturing of qPCR into a robust, accurate and reliable nucleic acid quantification technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bustin SA (2004) A-Z of quantitative PCR. IUL Press, La Jolla

    Google Scholar 

  2. Reuter T, Gilroyed BH, Alexander TW, Mitchell G, Balachandran A, Czub S, McAllister TA (2009) Prion protein detection via direct immuno-quantitative real-time PCR. J Microbiol Methods 78:307–311

    Article  CAS  Google Scholar 

  3. Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24:954–962

    CAS  Google Scholar 

  4. Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  CAS  Google Scholar 

  5. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  Google Scholar 

  6. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–138

    CAS  Google Scholar 

  7. Marras SA, Tyagi S, Kramer FR (2006) Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clinica Chimica Acta 363:48–60

    Article  CAS  Google Scholar 

  8. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  Google Scholar 

  9. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  Google Scholar 

  10. Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15:155–166

    Google Scholar 

  11. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol 34:597–601

    Article  CAS  Google Scholar 

  12. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  Google Scholar 

  13. Bustin SA, Mueller R (2005) Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci (Lond). 109:365–379

    Article  CAS  Google Scholar 

  14. Bustin SA (2006) Nucleic acid quantification and disease outcome prediction in colorectal cancer. Personalized Medicine 3:207–216

    Article  CAS  Google Scholar 

  15. Bustin SA, Mueller R (2006) Real-time reverse transcription PCR and the detection of occult disease in colorectal cancer. Mol Aspects Med 27:192–223

    Article  CAS  Google Scholar 

  16. Murphy J, Dorudi S, Bustin SA (2007) Molecular staging of colorectal cancer: new paradigm or waste of time? Expert Opin Med Diagn 1:31–45

    Article  CAS  Google Scholar 

  17. Bustin S (2008) Molecular medicine, gene-expression profiling and molecular diagnostics: putting the cart before the horse. Biomarkers in Medicine 2:201–207

    Article  CAS  Google Scholar 

  18. Bustin SA (2008) Real-time quantitative PCR-opportunities and pitfalls. European Pharmeceutical Review 4:18–23

    Google Scholar 

  19. Bustin SA (2008) Real-time polymerase chain reaction–towards a more reliable, accurate and relevant assay. European Pharmeceutical Review 6:19–27

    Google Scholar 

  20. Murphy J, Bustin SA (2009) Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? Expert Rev Mol Diagn 9:187–197

    Article  CAS  Google Scholar 

  21. Bustin SA (2010) Why the need for qPCR publication guidelines?–The case for MIQE. Methods 50:217–226

    Article  CAS  Google Scholar 

  22. Perez-Novo CA, Claeys C, Speleman F, Van Cauwenberge P, Bachert C, Vandesompele J (2005) Impact of RNA quality on reference gene expression stability. Biotechniques 39:52–56

    Article  CAS  Google Scholar 

  23. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  CAS  Google Scholar 

  24. Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 28:1601–1613

    Article  CAS  Google Scholar 

  25. Nolan T, Hands RE, Ogunkolade BW, Bustin SA (2006) SPUD: a qPCR assay for the detection of inhibitors in nucleic acid preparations. Anal Biochem 351:308–310

    Article  CAS  Google Scholar 

  26. Huggett J, Dheda K, Bustin S, Zumla A, Real-time RT-PCR (2005) normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  CAS  Google Scholar 

  27. Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C (2002) Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 309:293–300

    Article  CAS  Google Scholar 

  28. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–119

    CAS  Google Scholar 

  29. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:0034.1–0034.11

    Article  Google Scholar 

  30. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  Google Scholar 

  31. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  Google Scholar 

  32. Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143

    Article  CAS  Google Scholar 

  33. Uhlmann V, Martin CM, Sheils O, Pilkington L, Silva I, Killalea A, Murch SB, Walker-Smith J, Thomson M, Wakefield AJ, O’Leary JJ (2002) Potential viral pathogenic mechanism for new variant inflammatory bowel disease. Mol Pathol 55:84–90

    Article  CAS  Google Scholar 

  34. Bustin SA (2008) RT-qPCR and molecular diagnostics: no evidence for measles virus in the GI tract of autistic children. Eur Pharm Rev Dig 1:11–16

    Google Scholar 

  35. Hornig M, Briese T, Buie T, Bauman ML, Lauwers G, Siemetzki U, Hummel K, Rota PA, Bellini WJ, O’Leary JJ, Sheils O, Alden E, Pickering L, Lipkin WI (2008) Lack of association between measles virus vaccine and autism with enteropathy: a case-control study. PLoS ONE 3:e3140

    Article  Google Scholar 

  36. Afzal MA, Ozoemena LC, O’Hare A, Kidger KA, Bentley ML, Minor PD (2006) Absence of detectable measles virus genome sequence in blood of autistic children who have had their MMR vaccination during the routine childhood immunization schedule of UK. J Med Virol 78:623–630

    Article  CAS  Google Scholar 

  37. D’Souza Y, Fombonne E, Ward BJ (2006) No evidence of persisting measles virus in peripheral blood mononuclear cells from children with autism spectrum disorder. Pediatrics 118:1664–1675

    Article  Google Scholar 

  38. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, The MIQE (2009) guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  39. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2011) Primer sequence disclosure: a clarification of the MIQE guidelines. Clin Chem (in press)

  40. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. NatGenet 29:365–371

    CAS  Google Scholar 

  41. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK Jr, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJ, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR 3rd, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893

    Article  CAS  Google Scholar 

  42. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, Ashburner M, Axelrod N, Baldauf S, Ballard S, Boore J, Cochrane G, Cole J, Dawyndt P, De Vos P, DePamphilis C, Edwards R, Faruque N, Feldman R, Gilbert J, Gilna P, Glockner FO, Goldstein P, Guralnick R, Haft D, Hancock D, Hermjakob H, Hertz-Fowler C, Hugenholtz P, Joint I, Kagan L, Kane M, Kennedy J, Kowalchuk G, Kottmann R, Kolker E, Kravitz S, Kyrpides N, Leebens-Mack J, Lewis SE, Li K, Lister AL, Lord P, Maltsev N, Markowitz V, Martiny J, Methe B, Mizrachi I, Moxon R, Nelson K, Parkhill J, Proctor L, White O, Sansone SA, Spiers A, Stevens R, Swift P, Taylor C, Tateno Y, Tett A, Turner S, Ussery D, Vaughan B, Ward N, Whetzel T, San Gil I, Wilson G, Wipat A (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547

    Article  CAS  Google Scholar 

  43. Haney SA (2007) Increasing the robustness and validity of RNAi screens. Pharmacogenomics 8:1037–1049

    Article  CAS  Google Scholar 

  44. Sansone SA, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R, Kristal BS, Lindon J, Mendes P, Morrison N, Nikolau B, Robertson D, Sumner LW, Taylor C, van der Werf M, van Ommen B, Fiehn O (2007) The metabolomics standards initiative. Nat Biotechnol 25:846–848

    Article  CAS  Google Scholar 

  45. Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Michael Clark A, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK Jr, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Novere NL, Leebens-Mack J, Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ Jr, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26:889–896

    Article  CAS  Google Scholar 

  46. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, Penning LC, Toegel S (2010) MIQE precis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74

    Article  Google Scholar 

Download references

Acknowledgments

SAB wishes to thank the charity Bowel and Cancer Research for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Bustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huggett, J., Bustin, S.A. Standardisation and reporting for nucleic acid quantification. Accred Qual Assur 16, 399–405 (2011). https://doi.org/10.1007/s00769-011-0769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-011-0769-y

Keywords

Navigation