Skip to main content

Advertisement

Log in

Maternal l-glutamine supplementation during late gestation alleviates intrauterine growth restriction-induced intestinal dysfunction in piglets

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Maternal dietary supplementation with l-glutamine (Gln) has been considered as an option to improve fetal growth and to prevent the occurrence of intrauterine growth restriction (IUGR). This study investigated whether maternal Gln supplementation could improve fetal growth as well as the intestinal development during late pregnancy. Sixty pregnant Landrace × Large White multiparous sows were assigned to two groups, either the group fed the control diet or the group with the diet supplemented with 1% Gln from d 85 of gestation until farrowing. One normal body weight piglet and one IUGR piglet were obtained from six litters in each group. Reproductive performance, plasma concentrations of free amino acids and related metabolites as well as piglet growth and tissue indexes were determined. Maternal Gln supplementation during late gestation increased the average birth weight, while decreasing the within-litter variation of newborn piglets. The concentrations of Gln in plasma were lower in IUGR piglets than in normal piglets. Glutamine supplementation enhanced Gln concentrations in maternal and piglet plasma and the piglet jejunum, compared with the Control group. Supplementing Gln suppressed intestinal miR-29a levels, and increased the abundance of extracellular matrix (ECM) and tight junction (TJ) proteins, resulting in increased intestinal weight and improved morphologies of the piglets. Collectively, Gln supplementation to the sow’s diet increased fetal growth, decreased the within-litter variation of newborn piglets, and alleviated the IUGR-induced intestinal impairment. These findings suggest the possibility of maternal glutamine supplementation in the prevention and treatment of IUGR in animal production and human medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Gln:

l-Glutamine

HPLC:

High-performance liquid chromatography

IBS:

Irritable bowel syndrome

IUGR:

Intrauterine growth restriction

miRNA:

MicroRNA

MSG:

Monosodium glutamate

NBW:

Normal body weight

qRT-PCR:

Real-time quantitative polymerase chain reaction

TJ:

Tight junction

ZO-1:

Zonula occludens protein-1

References

  • Andreasyan K, Ponsonby AL, Dwyer T, Morley R, Riley M, Dear K, Cochrane J (2007) Higher maternal dietary protein intake in late pregnancy is associated with a lower at birth. Eur J Clin Nutr 61(4):498–508

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Boutry C, Bos C, Tome D (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90(3):814S–821S

    Article  PubMed  CAS  Google Scholar 

  • Boudry G, Rome V, Perrier C, Jamin A, Savary G, Le Huerou-Luron I (2014) A high-protein formula increases colonic peptide transporter 1 activity during neonatal life in low-birth-weight piglets and disturbs barrier function later in life. Br J Nutr 112(7):1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Brown LD, Green AS, Limesand SW, Rozance PJ (2011) Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci (Sch Ed) 3:428–444

    Google Scholar 

  • Che L, Yang Z, Xu M, Xu S, Che L, Lin Y, Fang Z, Feng B, Li J, Chen D, Wu D (2017) Maternal nutrition modulates fetal development by inducing placental efficiency changes in gilts. BMC Genom 18(1):213

    Article  CAS  Google Scholar 

  • Chen F, Wang T, Feng C, Lin G, Zhu Y, Wu G, Johnson G, Wang J (2015) Proteome differences in placenta and endometrium between normal and intrauterine growth restricted pig fetuses. PLoS One 10(11):e0142396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coeffier M, Claeyssens S, Hecketsweiler B, Lavoinne A, Ducrotte P, Dechelotte P (2003) Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am J Physiol Gastrointest Liver Physiol 285(2):G266–G273

    Article  PubMed  CAS  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Wu Z, Jia S, Wu G (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 964:116–127

    Article  PubMed  CAS  Google Scholar 

  • Dong L, Zhong X, He J, Zhang L, Bai K, Xu W, Wang T, Huang X (2016) Supplementation of tributyrin improves the growth and intestinal digestive and barrier functions in intrauterine growth-restricted piglets. Clin Nutr 35(2):399–407

    Article  PubMed  CAS  Google Scholar 

  • Favretto D, Cosmi E, Ragazzi E, Visentin S, Tucci M, Fais P, Cecchetto G, Zanardo V, Viel G, Ferrara SD (2012) Cord blood metabolomic profiling in intrauterine growth restriction. Anal Bioanal Chem 402(3):1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Guilloteau P, Zabielski R, Hammon HM, Metges CC (2010) Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Res Rev 23(1):4–22

    Article  PubMed  Google Scholar 

  • Han T, Li X, Cai D, Zhong Y, Chen L, Geng S, Yin S (2013) Effect of glutamine on apoptosis of intestinal epithelial cells of severe acute pancreatitis rats receiving nutritional support in different ways. Int J Clin Exp Pathol 6(3):503–509

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hewitt R, Van Barneveld R (2012) Supplementing lactating sow diets with glutamine to improve milk yield and growth of piglets. Pork CRC final report, pp 1–6

  • Ji Y, Wu Z, Dai Z, Wang X, Li J, Wang B, Wu G (2017) Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J Anim Sci Biotechnol 8:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Song G, Wu G, Gao H, Johnson GA, Bazer FW (2013a) Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod 88(5):113

    Article  PubMed  Google Scholar 

  • Kim SW, Weaver AC, Shen YB, Zhao Y (2013b) Improving efficiency of sow productivity: nutrition and health. J Anim Sci Biotechnol 4(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larque E, Ruiz-Palacios M, Koletzko B (2013) Placental regulation of fetal nutrient supply. Curr Opin Clin Nutr Metab Care 16(3):292–297

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Liu C, Feng C, Fan Z, Dai Z, Lai C, Li Z, Wu G, Wang J (2012) Metabolomic analysis reveals differences in umbilical vein plasma metabolites between normal and growth-restricted fetal pigs during late gestation. J Nutr 142(6):990–998

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Wang X, Wu G, Feng C, Zhou H, Li D, Wang J (2014) Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 46(7):1605–1623

    Article  PubMed  CAS  Google Scholar 

  • Littell RC, Henry PR, Ammerman CB (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76(4):1216–1231

    Article  PubMed  CAS  Google Scholar 

  • Manso HE, Filho HC, de Carvalho LE, Kutschenko M, Nogueira ET, Watford M (2012) Glutamine and glutamate supplementation raise milk glutamine concentrations in lactating gilts. J Anim Sci Biotechnol 3(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marc Rhoads J, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37(1):111–122

    Article  PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Moon HK, Carroll JA, Kim SW (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86(4):827–835

    Article  PubMed  CAS  Google Scholar 

  • McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85(2):571–633

    Article  PubMed  CAS  Google Scholar 

  • Metzler-Zebeli BU, Lang IS, Gors S, Brussow KP, Hennig U, Nurnberg G, Rehfeldt C, Otten W, Metges CC (2012) High-protein-low-carbohydrate diet during pregnancy alters maternal plasma amino acid concentration and placental amino acid extraction but not fetal plasma amino acids in pigs. Br J Nutr 108(12):2176–2189

    Article  PubMed  CAS  Google Scholar 

  • Rebecca A, Henman D (2016) Effect of l-glutamine in late gestation sow diets on survivability and growth of piglets. Australian Pork Limited, pp 1–12

  • Ren W, Luo W, Wu M, Liu G, Yu X, Fang J, Li T, Yin Y, Wu G (2013) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids 45(3):479–488

    Article  PubMed  CAS  Google Scholar 

  • Sawant OB, Ramadoss J, Hankins GD, Wu G, Washburn SE (2014) Effects of l-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol. Amino Acids 46(8):1981–1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawant OB, Wu G, Washburn SE (2015) Maternal l-glutamine supplementation prevents prenatal alcohol exposure-induced fetal growth restriction in an ovine model. Amino Acids 47(6):1183–1192

    Article  PubMed  CAS  Google Scholar 

  • Say L, Gulmezoglu AM, Hofmeyr GJ (2003) Maternal nutrient supplementation for suspected impaired fetal growth. Cochrane Database Syst Rev (1):CD000148

  • Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29(3):269–278

    Article  PubMed  CAS  Google Scholar 

  • Tan VP, Miyamoto S (2016) Nutrient-sensing mTORC1: integration of metabolic and autophagic signals. J Mol Cell Cardiol 95:31–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tegeler G, Schulke B, Ketelhut D (1985) Growth hormone, cyclic adenosine-3′,5′-monophosphate and creatinine in relation to growth in the pig. Exp Clin Endocrinol 85(2):235–241

    Article  PubMed  CAS  Google Scholar 

  • Trahair JF, Sangild PT (1997) Systemic and luminal influences on the perinatal development of the gut. Equine Vet J Suppl 24:40–50

    Google Scholar 

  • Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, Mastorakos G (2006) Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann N Y Acad Sci 1092:138–147

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen L, Li D, Yin Y, Wang X, Li P, Dangott LJ, Hu W, Wu G (2008a) Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J Nutr 138(1):60–66

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Chen LX, Li P, Li XL, Zhou HJ, Wang FL, Li DF, Yin YL, Wu GY (2008b) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138(6):1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wu W, Lin G, Li D, Wu G, Wang J (2010) Temporal proteomic analysis reveals continuous impairment of intestinal development in neonatal piglets with intrauterine growth restriction. J Proteome Res 9(2):924–935

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Lin G, Liu C, Feng C, Zhou H, Wang T, Li D, Wu G, Wang J (2014) Temporal proteomic analysis reveals defects in small-intestinal development of porcine fetuses with intrauterine growth restriction. J Nutr Biochem 25(7):785–795

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Wu Z, Ji Y, Sun K, Dai Z, Wu G (2016a) l-Glutamine enhances tight junction integrity by activating CaMK kinase 2-AMP-activated protein kinase signaling in intestinal porcine epithelial cells. J Nutr 146(3):501–508

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Degroote J, Van Ginneken C, Van Poucke M, Vergauwen H, Dam TM, Vanrompay D, Peelman LJ, De Smet S, Michiels J (2016b) Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes. FASEB J 30(2):863–873

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Feng C, Liu T, Shi M, Wu G, Bazer FW (2017) Physiological alterations associated with intrauterine growth restriction in fetal pigs: causes and insights for nutritional optimization. Mol Reprod Dev 84(9):897–904

    Article  PubMed  CAS  Google Scholar 

  • Wang CX, Chen F, Zhang WF, Zhang SH, Shi K, Song HQ, Wang YJ, Kim SW, Guan WT (2018a) Leucine promotes the growth of fetal pigs by increasing protein synthesis through the mTOR signaling pathway in longissimus dorsi muscle at late gestation. J Agric Food Chem 66:3840–3849

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhu Y, Feng C, Lin G, Wu G, Li D, Wang J (2018b) Innate differences and colostrum-induced alterations of jejunal mucosal proteins in piglets with intra-uterine growth restriction. Br J Nutr 119(7):734–747

    Article  PubMed  CAS  Google Scholar 

  • Watford M (1999) Is there a requirement for glutamine catabolism in the small intestine? Br J Nutr 81(4):261–262

    PubMed  CAS  Google Scholar 

  • Watford M (2008) Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr 138(10):2003S–2007S

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126(10):2578–2584

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr 134(9):2169–2172

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84(9):2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Li XL, Satterfield MC, Spencer TE (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88(13 Suppl):E195–E204

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE, Li XL, Wang JJ (2011) Triennial growth symposium: important roles for l-glutamine in swine nutrition and production. J Anim Sci 89(7):2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Xie C, Zhang Y, Fan Z, Yin Y, Blachier F (2015) Glutamate-glutamine cycle and exchange in the placenta-fetus unit during late pregnancy. Amino Acids 47(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai Z, Wang J, Wu Z, Wang X (2017) Functional amino acids in the development of the pig placenta. Mol Reprod Dev 84(9):870–882

    Article  PubMed  CAS  Google Scholar 

  • Yuan TL, Zhu YH, Shi M, Li TT, Li N, Wu GY, Bazer FW, Zang JJ, Wang FL, Wang JJ (2015) Within-litter variation in birth weight: impact of nutritional status in the sow. J Zhejiang Univ Sci B 16(6):417–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong X, Li W, Huang X, Wang Y, Zhang L, Zhou Y, Hussain A, Wang T (2012) Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation. Arch Anim Nutr 66(5):347–356

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Souba WW, Croce CM, Verne GN (2010) MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 59(6):775–784

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y (2017) Regulation of glutamine on the small intestinal development in IUGR pigs via suppressing intestinal MicroRNA-29a and autophagy activity. China Agricultural University, Beijing

    Google Scholar 

  • Zhu Y, Wang W, Yuan T, Fu L, Zhou L, Lin G, Zhao S, Zhou H, Wu G, Wang J (2017) MicroRNA-29a mediates the impairment of intestinal epithelial integrity induced by intrauterine growth restriction in pig. Am J Physiol Gastrointest Liver Physiol 312(5):G434–G442

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 31272449, 31422052 and 31630074), the Beijing Municipal Natural Science Foundation (no. S170001), the National Key Research and Development Program of China (no. 2016YFD0500506), the 111 Project (no. B16044), Jinxinnong Animal Science Developmental Foundation and Hunan Co-Innovation Center of Animal Production Safety, CICAPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with regard to publication of this research work.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. This research involves animals (pigs). The animal use protocols in this study were reviewed and approved by the China Agricultural University Animal Care and Use Committee (CAU20140508-1, Beijing, China).

Additional information

Handling Editor: F. Blachier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, T., Huang, S. et al. Maternal l-glutamine supplementation during late gestation alleviates intrauterine growth restriction-induced intestinal dysfunction in piglets. Amino Acids 50, 1289–1299 (2018). https://doi.org/10.1007/s00726-018-2608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2608-5

Keywords

Navigation