Skip to main content
Log in

Structural complexity and functional diversity of plant NADPH oxidases

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Plant NADPH oxidases also known as respiratory burst oxidase homologs (Rbohs) are a family of membrane-bound enzymes that play diverse roles in the defense response and morphogenetic processes via regulated generation of reactive oxygen species. Rbohs are associated with a variety of functions, although the reason for this is not clear. To evaluate using bioinformatics, the possible mechanisms for the observed functional diversity within the plant kingdom, 127 Rboh protein sequences representing 26 plant species were analyzed. Multiple clusters were identified with gene duplications that were both dicot as well as monocot-specific. The N-terminal sequences were observed to be highly variable. The conserved cysteine (equivalent of Cys890) in C-terminal of AtRbohD suggested that the redox-based modification like S-nitrosylation may regulate the activity of other Rbohs. Three-dimensional models corresponding to the N-terminal domain for Rbohs from Arabidopsis thaliana and Oryza sativa were constructed and molecular dynamics studies were carried out to study the role of Ca2+ in the folding of Rboh proteins. Certain mutations indicated possibly affect the structure and function of the plant NADPH oxidases, thereby providing the rationale for further experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alva V, Nam S-Z, Söding J, Lupas AN (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44(W1):W410–W415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14(3):283–291

    Article  CAS  PubMed  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Benkert P, Kunzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37(Web Server issue):W510–W514. doi:10.1093/nar/gkp322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Scheix T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KFX, Rogers J, Quétier F, Oldroyd GE, Debellé F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103(40):14959–14964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho RN, Solstad T, Bjørgo E, Barroso JF, Flatmark T (2003) Deamidations in recombinant human phenylalanine hydroxylase. Identification of labile asparagine residues and functional characterization of Asn→Asp mutant forms. J Biol Chem 278(17):15142–15152

    Article  CAS  PubMed  Google Scholar 

  • Chang Y-L, Li W-Y, Miao H, Yang S-Q, Li R, Wang X, Li W-Q, Chen K-M (2016) Comprehensive genomic analysis and expression profiling of the NOX gene families under abiotic stresses and hormones in plants. Genome Biol Evol 8(3):791–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87. doi:10.1002/prot.10389

    Article  CAS  PubMed  Google Scholar 

  • Chiu JC, Lee EK, Egan MG, Sarkar IN, Coruzzi GM, DeSalle R (2006) OrthologID: automation of genome-scale ortholog identification within a parsimony framework. Bioinformatics 22(6):699–707

    Article  CAS  PubMed  Google Scholar 

  • Cilia E, Pancsa R, Tompa P, Lenaerts T, Vranken WF (2013) From protein sequence to dynamics and disorder with DynaMine. Nat Commun 4:2741. doi:10.1038/ncomms3741

    Article  PubMed  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36(Web Server issue):W197–W201. doi:10.1093/nar/gkn238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32(Web Server issue):W96–W99. doi:10.1093/nar/gkh354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA, USA. http://www.pymol.org

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi:10.1093/nar/gkn180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding F, Dokholyan NV (2006) Emergence of protein fold families through rational design. PLoS Comput Biol 2(7):e85

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding F, Tsao D, Nie H, Dokholyan NV (2008) Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure 16(7):1010–1018. doi:10.1016/j.str.2008.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokholyan NV, Buldyrev SV, Stanley HE, Shakhnovich EI (1998) Discrete molecular dynamics studies of the folding of a protein-like model. Fold Des 3(6):577–587. doi:10.1016/S1359-0278(98)00072-8

    Article  CAS  PubMed  Google Scholar 

  • Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res 32(Web Server issue):W665–W667. doi:10.1093/nar/gkh381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudev T, Lim C (2007) Effect of carboxylate-binding mode on metal binding/selectivity and function in proteins. Acc Chem Res 40(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Egger LA, Park H, Inouye M (1997) Signal transduction via the histidyl-aspartyl phosphorelay. Genes Cells 2(3):167–184

    Article  CAS  PubMed  Google Scholar 

  • Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JD (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10(3):515–522

    Article  CAS  PubMed  Google Scholar 

  • Herve C, Tonon T, Collen J, Corre E, Boyen C (2006) NADPH oxidases in Eukaryotes: red algae provide new hints! Curr Genet 49(3):190–204. doi:10.1007/s00294-005-0044-z

    Article  CAS  PubMed  Google Scholar 

  • Ho HH, Ganeshalingam N, Rosenhouse-Dantsker A, Osman R, Gershengorn MC (2001) Charged residues at the intracellular boundary of transmembrane helices 2 and 3 independently affect constitutive activity of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. J Biol Chem 276(2):1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Huberts DHEW, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim et Biophys Acta 1803(4):520–525

    Article  CAS  Google Scholar 

  • Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11(2):97–108

    CAS  PubMed  Google Scholar 

  • Innis CA, Shi J, Blundell TL (2000) Evolutionary trace analysis of TGF-beta and related growth factors: implications for site-directed mutagenesis. Protein Eng 13(12):839–847

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Web Server issue):W460–W464. doi:10.1093/nar/gkm363

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24(11):1344–1348. doi:10.1093/bioinformatics/btn195

    Article  CAS  PubMed  Google Scholar 

  • Jakubowicz M, Galganska H, Nowak W, Sadowski J (2010) Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings. J Exp Bot 61(12):3475–3491. doi:10.1093/jxb/erq177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292(2):195–202. doi:10.1006/jmbi.1999.3091

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Pati PK (2016) Analysis of cis-acting regulatory elements of respiratory burst oxidase homolog (Rboh) gene families in Arabidopsis and rice provides clues for their diverse functions. Comput Biol Chem 62:104–118

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Sharma A, Guruprasad K, Pati PK (2014) Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 32(3):551–563

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Singh P, Pati PK (2015) Integrating knowledge of bioinformatics in medicinal plant research. In: Keshavachandran R, Raji Radhakrishnan S (eds) Agriculture bioinformatics. NIPA Publishers, New Delhi, pp 91–142

    Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Kleiger G, Eisenberg D (2002) GXXXG and GXXXA motifs stabilize FAD and NAD(P)-binding Rossmann folds through C(alpha)-H···O hydrogen bonds and van der Waals interactions. J Mol Biol 323(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Kawakita K, Maeshima M, Doke N, Yoshioka H (2006) Subcellular localization of Strboh proteins and NADPH-dependent O2(−)-generating activity in potato tuber tissues. J Exp Bot 57(6):1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19(3):1065–1080. doi:10.1105/tpc.106.048884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274(35):25051–25060

    Article  CAS  PubMed  Google Scholar 

  • Kota P, Ding F, Ramachandran S, Dokholyan NV (2011) Gaia: automated quality assessment of protein structure models. Bioinformatics 27(16):2209–2215. doi:10.1093/bioinformatics/btr374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozbial PZ, Mushegian AR (2005) Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozlowski LP, Bujnicki JM (2012) MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinform 13:111. doi:10.1186/1471-2105-13-111

    Article  Google Scholar 

  • Kristensen DM, Wolf YI, Mushegian AR, Koonin EV (2011) Computational methods for gene orthology inference. Brief Bioinform 12(5):379–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011–1021

    Article  CAS  Google Scholar 

  • Kumar GNM, Iyer S, Knowles NR (2007) Strboh A homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers. Planta 227(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Lawton-Rauh A (2003) Evolutionary dynamics of duplicated genes in plants. Mol Phylogenet Evol 29(3):396–409

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8(12):995

    Article  CAS  PubMed  Google Scholar 

  • Lightfoot DJ, Boettcher A, Little A, Shirley N, Able AJ (2008) Identification and characterisation of barley (Hordeum vulgare) respiratory burst oxidase homologue family members. Funct Plant Biol 35(5):347–359. doi:10.1071/FP08109

    Article  CAS  Google Scholar 

  • Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009a) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60(11):3221–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Zhang Y, Jiang M-Y (2009b) Alternative splicing and differential expression of two transcripts of nicotine adenine dinucleotide phosphate oxidase B gene from Zea mays. J Integr Plant Biol 51(3):287–298

    Article  CAS  PubMed  Google Scholar 

  • Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90(5):1790–1796

    Article  CAS  PubMed  Google Scholar 

  • Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5(9):805–811

    Article  CAS  PubMed  Google Scholar 

  • Marie-Claire C, Ruffet E, Antonczak S, Beaumont A, O’Donohue M, Roques BP, Fournié-Zaluski MC (1997) Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding. Biochemistry 36(45):13938–13945

    Article  CAS  PubMed  Google Scholar 

  • Marino D, Andrio E, Danchin EGJ, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N (2011) A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol 189(2):580–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Miller JL, Lyle VA, Cunningham D (1992) Mutation of leucine-57 to phenylalanine in a platelet glycoprotein Ib alpha leucine tandem repeat occurring in patients with an autosomal dominant variant of Bernard–Soulier disease. Blood 79(2):439–446

    CAS  PubMed  Google Scholar 

  • Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala M-K, Santana O, Sánchez F, Quinto C (2012) A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. Plant Cell Physiol 53(10):1751–1767

    Article  CAS  PubMed  Google Scholar 

  • Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8(2):122–128

    Article  CAS  PubMed  Google Scholar 

  • Müller RT, Honnert U, Reinhard J, Bähler M (1997) The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695. Mol Biol Cell 8:2039–2053

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184(4):885–897. doi:10.1111/j.1469-8137.2009.03005.x

    Article  PubMed  Google Scholar 

  • Müller K, Linkies A, Leubner-Metzger G, Kermode AR (2012) Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling. J Exp Bot 63(18):6325–6334. doi:10.1093/jxb/ers284

    Article  PubMed  PubMed Central  Google Scholar 

  • Oda T, Hashimoto H, Kuwabara N, Akashi S, Hayashi K, Kojima C, Wong HL, Kawasaki T, Shimamoto K, Sato M, Shimizu T (2010) Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J Biol Chem 285(2):1435–1445. doi:10.1074/jbc.M109.058909

    Article  CAS  PubMed  Google Scholar 

  • Oue S, Okamoto A, Yano T, Kagamiyama H (1999) Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J Biol Chem 274(4):2344–2349

    Article  CAS  PubMed  Google Scholar 

  • Paulin FE, Campbell LE, O’Brien K, Loughlin J, Proud CG (2001) Eukaryotic translation initiation factor 5 (eIF5) acts as a classical GTPase-activator protein. Curr Biol 11(1):55–59

    Article  CAS  PubMed  Google Scholar 

  • Potocký M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174(4):742–751. doi:10.1111/j.1469-8137.2007.02042.x

    Article  PubMed  Google Scholar 

  • Proctor EA, Ding F, Dokholyan NV (2011) Discrete molecular dynamics. Wiley Interdiscip Rev Comput Mol Sci 1(1):80–92

    Article  CAS  Google Scholar 

  • Procyshyn RM, Reid RE (1994) A structure/activity study of calcium affinity and selectivity using a synthetic peptide model of the helix-loop-helix calcium-binding motif. J Biol Chem 269(3):1641–1647

    CAS  PubMed  Google Scholar 

  • Ramachandran S, Dokholyan NV (2012) Homology modeling: generating structural models to understand protein function and mechanism. In: Dokholyan NV (ed) Computational modeling of biological systems. Springer, New York, pp 97–116

    Chapter  Google Scholar 

  • Ramachandran S, Kota P, Ding F, Dokholyan NV (2011) Automated minimization of steric clashes in protein structures. Proteins 79(1):261–270. doi:10.1002/prot.22879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensing SA (2014) Gene duplication as a driver of plant morphogenetic evolution. Curr Opin Plant Biol 17:43–48

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JP, Levitt M, Chopra G (2012) KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 40(Web Server issue):W323–W328. doi:10.1093/nar/gks376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. doi:10.1038/nprot.2010.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16(3):616–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  • Sanders SA, Williams CH, Massey V (1999) The roles of two amino acid residues in the active site of l-lactate monooxygenase. Mutation of arginine 187 to methionine and histidine 240 to glutamine. J Biol Chem 274(32):22289–22295

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Dessimoz C, Gonnet GH (2007) OMA Browser—exploring orthologous relations across 352 complete genomes. Bioinformatics 23(16):2180–2182

    Article  CAS  PubMed  Google Scholar 

  • Shinoda T, Arai K, Shigematsu-Iida M, Ishikura Y, Tanaka S, Yamada T, Kimber MS, Pai EF, Fushinobu S, Taguchi H (2005) Distinct conformation-mediated functions of an active site loop in the catalytic reactions of NAD-dependent d-lactate dehydrogenase and formate dehydrogenase. J Biol Chem 280(17):17068–17075

    Article  CAS  PubMed  Google Scholar 

  • Shirvanyants D, Ding F, Tsao D, Ramachandran S, Dokholyan NV (2012) Discrete molecular dynamics: an efficient and versatile simulation method for fine protein characterization. J Phys Chem B 116(29):8375–8382. doi:10.1021/jp2114576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si Y, Dane F, Rashotte A, Kang K, Singh NK (2010) Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon). J Exp Bot 61(6):1635–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li WZ, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:Artn 539. doi:10.1038/Msb.2011.75

    Article  Google Scholar 

  • Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248. doi:10.1093/nar/gki408

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnhammer EL, Östlund G (2015) InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res 43(D1):D234–D239

    Article  CAS  PubMed  Google Scholar 

  • Taillon BE, Jarvik JW (1995) Helix mutations in the centrosome-associated EF-hand protein centrin. Protoplasma 189:203–215

    Article  CAS  Google Scholar 

  • Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286(15):13304–13313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319(5867):1241–1244. doi:10.1126/science.1152505

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo M, Altschmied L, Schweizer P, Kogel K-H, Hückelhoven R (2006) Respiratory burst oxidase homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. J Exp Bot 57(14):3781–3791

    Article  CAS  PubMed  Google Scholar 

  • von Löhneysen K, Noack D, Wood MR, Friedman JS, Knaus UG (2010) Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization. Mol Cell Biol 30(4):961–975

    Article  Google Scholar 

  • Wang G-F, Li W-Q, Li W-Y, Wu G-L, Zhou C-Y, Chen K-M (2013) Characterization of Rice NADPH oxidase genes and their expression under various environmental conditions. Int J Mol Sci 14(5):9440–9458

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang MM, Wang YJ, Gao YT, Li R, Wang GF, Li WQ, Liu WT, Chen KM (2016) The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice. Physiol Plant 156:421–443

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19(12):4022–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X-J, Wang Y-J, Zhou Y-H, Tao Y, Mao W-H, Shi K, Asami T, Chen Z, Yu J-Q (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150(2):801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan HH, Mudge J, Kim DJ, Larsen D, Shoemaker RC, Cook DR, Young ND (2003) Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. Theor Appl Genet 106(7):1256–1265

    Article  CAS  PubMed  Google Scholar 

  • Yoshie Y, Goto K, Takai R, Iwano M, Takayama S (2005) Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnol 22:127–135 (SRC—GoogleScholar)

    Article  CAS  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15(3):706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun B-W, Feechan A, Yin M, Saidi NBB, Le Bihan T, Yu M, Moore JW, Kang J-G, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478(7368):264–268

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wu Y, Luo Y, Zou Y, Ma B, Zhang Q (2014) R102Q mutation shifts the salt-bridge network and reduces the structural flexibility of human neuronal calcium sensor-1 protein. J Phys Chem B 118(46):13112–13122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received under Innovation in Science Pursuit for Inspired Research (INSPIRE) Programme, Department of Science and Technology (DST), Government of India (Grant no. DST/INSPIRE Fellowship/2010[79]) and Fulbright-Nehru Doctoral and Professional Research Fellowship, United States-India Educational Foundation (USIEF), New Delhi, India (Grant no. 1663/DPR/2012-2013). The support from Department of Biotechnology (DBT), Government of India (Grant no. BT/PR13965/BRB/10/883/2010) is also acknowledged. The authors are thankful to Onur Dagliyan for his helpful suggestions during simulation sessions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Kumar Pati.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies involving human participants.

Additional information

Handling Editor: J. D. Wade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 56 kb)

Supplementary material 2 (PDF 4306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Guruprasad, K., Temple, B.R.S. et al. Structural complexity and functional diversity of plant NADPH oxidases. Amino Acids 50, 79–94 (2018). https://doi.org/10.1007/s00726-017-2491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2491-5

Keywords

Navigation