Skip to main content

Advertisement

Log in

The glycation of fibronectin by glycolaldehyde and methylglyoxal as a model for aging in Bruch’s membrane

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The purpose of the study is to identify the sites of modification when fibronectin reacts with glycolaldehyde or methylglyoxal as a model system for aging of Bruch’s membrane. A synthetic peptide consisting of the α5β1 integrin binding region of fibronectin was incubated with glycolaldehyde for 12 h or with methylglyoxal for 1 h at 37 °C. After tryptic digestion, the samples were analyzed with liquid chromatography–mass spectrometry (LC/MS). Tandem MS was used to determine the sites of modification. The adducts, aldoamine and N ε-carboxymethyl-lysine, attached preferably at lysine residues when the fibronectin peptide reacted with glycolaldehyde. When the fibronectin peptide reacted with methylglyoxal, modifications occurred at lysine and arginine residues. At lysine residues, N ε-carboxyethyl-lysine adducts were present. At arginine residues, hydroimidazolone and tetrapyrimidine adducts were present. Several advanced glycation endproducts were generated when fibronectin was glycated via glycolaldehyde and methylglyoxal. These results can help explain the structural changes Bruch’s membrane undergoes during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrover M, Vilanova B, Munoz F, Donoso J (2008) Kinetic study of the reaction of glycolaldehyde with two glycation target models. Ann N Y Acad Sci 1126:235–240

    Article  CAS  PubMed  Google Scholar 

  • Ahmed N, Thornalley PJ, Dawczynski J, Franke S, Strobel J, Stein G, Haik GM (2003) Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest Ophthalmol Vis Sci 44(12):5287–5292

    Article  PubMed  Google Scholar 

  • Beattie JR, Pawlak AM, Boulton ME, Zhang J, Monnier VM, McGarvey JJ, Stitt AW (2010) Multiplex analysis of age-related protein and lipid modifications in human Bruch’s membrane. FASEB J 24(12):4816–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock JW, Cotham WE, Thorpe SR, Baynes JW, Ames JM (2007) Detection and identification of arginine modifications on methylglyoxal-modified ribonuclease by mass spectrometric analysis. J Mass Spectrom 42(1):89–100

    Article  CAS  PubMed  Google Scholar 

  • Dobler D, Ahmed N, Song L, Eboigbodin KE, Thornalley PJ (2006) Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 55(7):1961–1969

    Article  CAS  PubMed  Google Scholar 

  • Duran-Jimenez B, Dobler D, Moffatt S, Rabbani N, Streuli CH, Thornalley PJ, Tomlinson DR, Gardiner NJ (2009) Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 58(12):2893–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farboud B, Aotaki-Keen A, Miyata T, Hjelmeland LM, Handa JT (1999) Development of a polyclonal antibody with broad epitope specificity for advanced glycation endproducts and localization of these epitopes in Bruch’s membrane of the aging eye. Mol Vis 5:11

    CAS  PubMed  Google Scholar 

  • Glenn JV, Beattie JR, Barrett L, Frizzell N, Thorpe SR, Boulton ME, McGarvey JJ, Stitt AW (2007) Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch’s membrane leading to accurate, nondestructive prediction of ocular aging. FASEB J 21(13):3542–3552

    Article  CAS  PubMed  Google Scholar 

  • Glenn JV, Mahaffy H, Wu K, Smith G, Nagai R, Simpson DA, Boulton ME, Stitt AW (2009) Advanced glycation end product (AGE) accumulation on Bruch’s membrane: links to age-related RPE dysfunction. Invest Ophthalmol Vis Sci 50(1):441–451

    Article  PubMed  Google Scholar 

  • Glomb MA, Monnier VM (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 270(17):10017–10026

    Article  CAS  PubMed  Google Scholar 

  • Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40(3):775–779

    CAS  PubMed  Google Scholar 

  • Hasegawa G, Nakano K, Tsutsumi Y, Kondo M (1994) Effects of aldehyde-modified proteins on mesangial cell-matrix interaction. Diabetes Res Clin Pract 23(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Hayashi CM, Nagai R, Miyazaki K, Hayase F, Araki T, Ono T, Horiuchi S (2002) Conversion of Amadori products of the Maillard reaction to N(epsilon)-(carboxymethyl)lysine by short-term heating: possible detection of artifacts by immunohistochemistry. Lab Invest 82(6):795–808

    Article  CAS  Google Scholar 

  • Howes KA, Liu Y, Dunaief JL, Milam A, Frederick JM, Marks A, Baehr W (2004) Receptor for advanced glycation end products and age-related macular degeneration. Invest Ophthalmol Vis Sci 45(10):3713–3720

    Article  PubMed  Google Scholar 

  • Hussain AA, Starita C, Hodgetts A, Marshall J (2010) Macromolecular diffusion characteristics of ageing human Bruch’s membrane: implications for age-related macular degeneration (AMD). Exp Eye Res 90(6):703–710

    Article  CAS  PubMed  Google Scholar 

  • Ida H, Ishibashi K, Reiser K, Hjelmeland LM, Handa JT (2004) Ultrastructural aging of the RPE-Bruch’s membrane-choriocapillaris complex in the d-galactose-treated mouse. Invest Ophthalmol Vis Sci 45(7):2348–2354

    Article  PubMed  Google Scholar 

  • Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 269(51):32299–32305

    CAS  PubMed  Google Scholar 

  • Murdaugh LS, Dillon J, Gaillard ER (2009) Modifications to the basement membrane protein laminin using glycolaldehyde and A2E: a model for aging in Bruch’s membrane. Exp Eye Res 89(2):187–192

    Article  CAS  PubMed  Google Scholar 

  • Nagai R, Matsumoto K, Ling X, Suzuki H, Araki T, Horiuchi S (2000) Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49(10):1714–1723

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj RH, Linetsky M, Stitt AW (2012) The pathogenic role of Maillard reaction in the aging eye. Amino Acids 42(4):1205–1220

    Article  CAS  PubMed  Google Scholar 

  • Rabbani N, Thornalley PJ (2011) Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22(3):309–317

    Article  CAS  PubMed  Google Scholar 

  • Rabbani N, Thornalley PJ (2012) Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42(4):1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Schutt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44(8):3663–3668

    Article  PubMed  Google Scholar 

  • Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25(3–4):275–281

    Article  CAS  PubMed  Google Scholar 

  • Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Prog Horm Res 56:1–21

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Paik DC, Del Priore LV, Burch RL, Gaillard ER (2005) Nitrite-modified extracellular matrix proteins deleteriously affect retinal pigment epithelial cell function and viability: a comparison study with nonenzymatic glycation mechanisms. Curr Eye Res 30(8):691–702

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Ishibashi K, Bhutto IA, Tian J, Lutty GA, Handa JT (2006) The expression of advanced glycation endproduct receptors in rpe cells associated with basal deposits in human maculas. Exp Eye Res 82(5):840–848

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO (2009) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 8(2):754–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yang Z, Zhu B, Hu J, Liew CW, Zhang Y, Leopold JA, Handy DE, Loscalzo J, Stanton RC (2012) Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose. PLoS ONE 7(11):e49128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R. Gaillard.

Ethics declarations

Conflict of interests

The authors do not have competing interests and/or commercial relationships.

The work reported here does not invovle human participants or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thao, M.T., Gaillard, E.R. The glycation of fibronectin by glycolaldehyde and methylglyoxal as a model for aging in Bruch’s membrane. Amino Acids 48, 1631–1639 (2016). https://doi.org/10.1007/s00726-016-2222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2222-3

Keywords

Navigation