Skip to main content

Advertisement

Log in

Bioactive dietary peptides and amino acids in inflammatory bowel disease

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn’s disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

γ-EC:

γ-Glutamylcysteine

γ-EV:

γ-Glutamylvaline

AA:

Amino acids

Apolipoprotein L6:

APOL6

CaSR:

Extracellular calcium-sensing receptor

IBD:

Inflammatory bowel disease

UC:

Ulcerative colitis

CD:

Crohn’s disease

DC:

Dendritic cells

IECs:

Intestinal epithelial cells

GALT:

Gut-associated lymphoid tissue

IL:

Interleukin

ROS:

Reactive oxygen species

Th:

T helper

TLRs:

Toll-like receptors

DSS:

Dextran sodium sulfate

TNBS:

2,4,6-Trinitrobenzene sulfonic acid

TNF-α:

Tumor necrosis factor-alpha

References

  • Adibi SA (1997) The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113:332–340

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev 3:745–756

    Article  CAS  Google Scholar 

  • Ajibade AA, Wang Q, Cui J, Zou J, Xia X, Wang M et al (2012) TAK1 negatively regulates NF-kB and p38 MAP kinase activation in Gr-1 + CD11B + neutrophiles. Immunity 36:43–54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bailey M, Haverson K (2006) The postnatal development of the mucosal immune system and mucosal tolerance in domestic animals. Vet Res 37:443–453

    Article  CAS  PubMed  Google Scholar 

  • Bassaganya-Riera J, Hontecillas R (2006) CLA and n-3 PUFA differentially modulate clinical activity and colonic RRAR-responsive gene expression in a pig model of experimental IBD. Clinical Nutrition 25:454–465

    Article  CAS  PubMed  Google Scholar 

  • Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377

    Article  CAS  PubMed  Google Scholar 

  • Baumgart DC, Sandborn WJ (2007) Gastroenterology 2: Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369:1641–1657

    Article  CAS  PubMed  Google Scholar 

  • Beutheu S, Ghouzali I, Galas L, Dechelotte P, Coeffier M (2013) Glutamine and arginine improve permeability and tight junction protein expression in methotrexate-treated Caco-2 cells. Clin Nutri 32:863–869

    Article  CAS  Google Scholar 

  • Born M, Bouma G (2004) Animal models of inflammatory bowel diseases. Drug Discov Today: Disease Models 1:437–443

    Google Scholar 

  • Bouwmeester T, Bauch A, Ruffner H, Angrand P, Bergamini G, Croughton K et al (2004) A physical and functional map of the human TNF-a/NF-kB signal transduction pathway. Nat Cell Biol 6:97–105

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg P, Carlsen HS, Halstensen TS (2006) The B-cell system in inflammatory bowel diseases. Adv Exp Med Biol 579:149–167

    Article  CAS  PubMed  Google Scholar 

  • Breese EJ, Michie CA, Nicholls SW, Murch SH, Williams CB, Domizio P (1994) Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology 106:1455–1466

    CAS  PubMed  Google Scholar 

  • Bresalier RS (1999) Calcium, chemoprevention, and cancer: a small step forward (a long way to go). Gastroenterology 116:1261–1263

    Article  CAS  PubMed  Google Scholar 

  • Brown EM, MacLeod RJ (2001) Extacellular calcium sensing and etracellular calcium signaling. Physiol Rev 81:239–297

    CAS  PubMed  Google Scholar 

  • Casteel SW, Cowart RP, Weis CP, Henningsen GM, Hoffman E, Brattin WJ et al (1996) A swine model for determining the bioavailability of lead from contaminated media. In: Tumbleson ME, Schook LB (eds) Advances in swine in biomedical research. Plenum Press, New York, pp 637–646

    Chapter  Google Scholar 

  • CDC (2011) US Centers for Disease Prevention and Control. http://www.cdc.gov/ibd/. Accessed 6 Feb 2013

  • Chakrabarty S, Radjendirane v, Appelman H, Varani J (2003) Extracellular calcium and calcium sensing receptor function in human colon carcinomas promotion of E-cadherin expression and suppression of catenin/TCF activation. Cancer Res 6:67–71

    Google Scholar 

  • Chapkin RS, Davidson LA, Ly L, Weeks BR, Lupton JR, McMurray DN (2007) Immunomodulatory effects of (n-3) fatty acids: putative link to inflammation and colon cancer. J Nutri 134:200S–204S

    Google Scholar 

  • Charerntantanakul W, Roth JA (2007) Biology of procine T lymphocytes. Anim Health Res Rev 7:81–89

    Article  Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F (1995) Stuctural analysis of antioxidative peptides from soybean beta-conglycinin. J Agri Food Chem 43:574–578

    Article  CAS  Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K (1998) Antioxidative activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean peptide. J Agric Food Chem 46:49–53

    Article  CAS  PubMed  Google Scholar 

  • Cho JH (2006) Finding inflammatory bowel disease genes will lead to a cure. Can J Gastroenterol 20:641–642

    PubMed Central  PubMed  Google Scholar 

  • Conigrave AD, Brown EM (2006) Taste receptors in the gastrointestinal tract II L-amino acid sensing by calcium-sensing receptors implications for GI physiology. Am J Physiol Gastrointest Liver Physiol 291:G753–G761

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Eur J Physiol 447:610–618

    Article  CAS  Google Scholar 

  • de Silva S, Devlin S, Panaccione R (2010) Optmizing the safety of biologic therapy for IBD. Nat Rev Gastroenterol Hepatol 7:93–101

    Article  PubMed  Google Scholar 

  • Deventer SJ (1997) Tumour necrosis factor and Crohn’s disease. Gut 40:443–448

    Article  PubMed Central  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Ann Rev Physiol 69:483–510

    Article  CAS  Google Scholar 

  • Disilvestro RA (2001) Flavonoids as antioxidants. In: Wildman RE (ed) Handbook of nutraceuticals and functional foods. CRC Press, Boca Raton, pp 127–142

    Google Scholar 

  • Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48:430–441

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA (2007) beta-arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol 44:3092–3099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faure M, Mettraux C, Moennoz D, Godin J, Vuichoud J, Rochat F et al (2006) Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats. J Nutr 136:1558–1564

    CAS  PubMed  Google Scholar 

  • Fillmann H, Kretzmann NA, San-Miguel B (2007) Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat. Toxicology 236:217–226

    Article  CAS  PubMed  Google Scholar 

  • Fossum C (1998) Cytokines as markers for infections and their effect on growth performance and well-being in the pig. Domest Anim Endocrinol 5:439–444

    Article  Google Scholar 

  • Fuss IJ, Neurath M, Boirivant M et al (1996) Disparate CD4+ lamnia propria (LP) lymphokine secretion profiles in inflammatory bowel disease Crohn’s disease LP cells manifest increased secretion of INF-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 157:1261–1270

    CAS  PubMed  Google Scholar 

  • Gao II, Sun Y, Wu Y, Luan B, Wang Y, Qu B et al (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kB pathways. Mol Cell 14:303–317

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Doull F, Rutherfurd KJ, Cross ML (2000) Immunoregulatory peptides in bovine milk. Br J Nutr 84:S111–S117

    CAS  PubMed  Google Scholar 

  • Grell M (1995) Tumor necrosis factor (TNF) receptors in cellular signaling of soluble and membrane-expressed TNF. J Inflamm 47:8–17

    CAS  PubMed  Google Scholar 

  • Hebert SC, Cheng S, Geibel J (2004) Functions and roles of the extracellular Ca2+-sensing receptor in the gastrointestinal tract. Cell Calcium 35(3):239–247

    Article  CAS  PubMed  Google Scholar 

  • Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev/Mol Cell Biol 4:530–538

    Article  CAS  Google Scholar 

  • Hommes D, Baer F, van Assche G et al (2006) The ideal management of Crohn’s disease: top down versus step up strategies: a randomized controlled trial. Gastroenterology 130:A108

    Google Scholar 

  • Hou Y, Chu C, Ko T, Yeh C, Yeh S (2013) Effects of alanyl-glutamine dipeptide on the expression of colon-inflammatory mediators during the recovery phase of colitis induced by dextran sulfate sodium. Eur J Nutr 52:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi S, Aoyama T, Miura K, Osterreicher CH, Kodama Y, Miyai K et al (2010) Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis and carcinogenesis. PNAS 107:844–849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iskandar MM, Dauletbaev N, Kubow S, Mawji N, Lands LC (2013) Whey protein hydrolysates decrease IL-8 secretion in lipopolysaccharide (LPS)-stimulated respiratory epithelial cells by affecting LPS binding to Toll-like receptor 4. Br J Nutr 3:1–11

    Google Scholar 

  • Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–1269

    Article  CAS  PubMed  Google Scholar 

  • Jobin C, Holt L, Bradham CA, Streetz K, Brenner DA, Sartor RB (1999) TNF receptor-associated factor-2 is involved in both IL-1beta and TNF-alpha signaling cascades leading to NF-kappaB activation and IL-8 expression in human intestinal epithelial cells. J Immunol 162:4447–4454

    CAS  PubMed  Google Scholar 

  • Johnson IT (2001) New food components and gastrointestinal health. Proc Nutr Soc 60:481–488

    Article  CAS  PubMed  Google Scholar 

  • Jurjus AR, Khoury NN, Reimund J (2004) Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods 50:81–92

    Article  CAS  PubMed  Google Scholar 

  • Kajino-Sakamoto R, Inagaki M, Lippert E, Akira S, Robine S, Matsumoto K et al (2008) Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development Ileitis and colitis. J Immunol 181:1143–1158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanayama A, Inoue J, Sugita-Konishi Y, Shimizu M, Miyamoto Y (2002) Oxidation of IκBα at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-κB activation. J Biol Chem 277:24049–24056

    Article  CAS  PubMed  Google Scholar 

  • Katayama S, Mine Y (2007) Antioxidative activity of amino acids on tissue oxidative stress in human intestinal epithelial cell model. J Agric Food Chem 17:8458–8464

    Article  CAS  Google Scholar 

  • Katayama S, Xu X, Fan MZ, Mine Y (2006) Antioxidative stress activity of oligophosphopeptides derived from hen egg yolk phosvitin in Caco-2 cells. J Agric Food Chem 54:773–778

    Article  CAS  PubMed  Google Scholar 

  • Katayama S, Ishikawa S, Fan MZ, Mine Y (2007) Oligophosphopeptides derived from egg yolk posvitin up-regulate gamma-glutamlcysteine synthetase and antioxidant enzymes aginst oxidative stress in Caco-2 cells. J Agric Food Chem 55:2829–2835

    Article  CAS  PubMed  Google Scholar 

  • Kim CJ, Kovacs-Nolan J, Yang C, Archbold T, Fan MZ, Mine Y (2009a) L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis. Bionchim Biophys Acta 1790:1161–1169

    Article  CAS  Google Scholar 

  • Kim J, Kajino-Sakamoto R, Omori E, Jobin C, Ninomiya-Tsuji J (2009b) Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against chemical-induced colitis. PLoS One 4:e4561–e4571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim CJ, Kovacs-Nolan JA, Yang C, Archbold T, Fan MZ, Mine Y (2010) L-Tryptophan ehibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J Nutr Biochem 21:468–475

    Article  CAS  PubMed  Google Scholar 

  • Kovacs-Nolan J, Zhang H, Ibuki M, Nakamori T, Yoshiura K, Turner PV et al (2012) The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim Biophys Acta 1820:1753–1763

    Article  CAS  PubMed  Google Scholar 

  • Kovacs-Nolan J, Rupa P, Matsui T, Tanaka M, Konishi T, Sauchi Y, Sato K, Ono S, Mine Y (2014) In vitro and ex vivo uptake of glutathione (GSH) across the intestinal epithelium and fate of oral GSH after in vivo supplementation. J Agric Food Chem 62:9499–9506

    Article  CAS  PubMed  Google Scholar 

  • Kretzmann NA, Fillmann H, Mauriz JL, Marroni CA, Marroni A, Gonzalez-Gallego J et al (2008) Effects of glutamine on proinflammatory gene expression and activation of nuclear factor kappa B and signal transducers and activators of transcription in TNBS-induced colitis. Inflamm Bowel Dis 14(11):1504–1513

    Article  PubMed  Google Scholar 

  • Li YW, Li B (2013) Characterization of structure-antioxidant activity relationship of peptides in free radical systems using QSAR models: key sequence positions and their amino acid properties. J Theor Biol 318:29–43

    Article  CAS  PubMed  Google Scholar 

  • Lih-Bordy L, Powell SR, Collier KP, Reddy GM (1996) Increased oxidavtive stress and decreased antioxidand defenses in mucosa of inflammatory bowel disease. Dig Dis Sci 41:2078–2086

    Article  Google Scholar 

  • Liu Q, Busby JG, Molkentin JD (2009) Interaction between TAK1-TAB 1-TAB 2 and RCAN1-calcineurin defines a signalling nodal control point. Nat Cell Biol 11:154–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macarthur M, Hold GL, EI-Omar EM (2004) Inflammation and cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol 286:G515–G520

    Article  CAS  PubMed  Google Scholar 

  • Meria LB, Ugni JM, Green SL, Lee C, Pang B, Borenshtein D et al (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118:2516–2525

    Google Scholar 

  • Mizoguchi A (2012) Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci 105:263–319

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81:247–265

    Article  CAS  PubMed  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev/Cancer 2(8):584–593

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256

    Article  CAS  PubMed  Google Scholar 

  • Ockenga GJ (2005) Glutamine-enriched total parenteral nutrition in patients with inflammatory bowel disease. Eur J Clin Nutri 59:1302–1309

    Article  CAS  Google Scholar 

  • Ohsu T, Amino Y, Nagasaki H, Yamanaka T, Takeshita S, Hatanaka T et al (2010) Involvement of the calcium-sensing receptor in human taste perception. JBC 285:1016–1022

    Article  CAS  Google Scholar 

  • Omori E, Matsumoto K, Sanjo H, Sato S, Akira S, Smart RC et al (2006) TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. JBC 281:19610–19617

    Article  CAS  Google Scholar 

  • Othman M, Aguero R, Lin HC (2008) Alterations in intestinal microbial flora and human disease. Curr Opin Gastroenterol 24:11–16

    Article  PubMed  Google Scholar 

  • Owenberg M, Peppelenbosch M, Hommes D (2006) Biological therapy in the management of recent-onset Crohn’s Disease. Drugs 66:1431–1439

    Article  Google Scholar 

  • Oz HS, Chen TS, McClain CJ, de Villiers WJ (2005) Antioxidants as novel therapy in a murine model of colitis. J Nutr Biochem 16:297–304

    Article  CAS  PubMed  Google Scholar 

  • Pache I, Rogler G, Felley C (2009) TNF-alph blockers in inflammatory bowel diseases: practical consensus, recommendations and a user’s guid. Swiss Med WKLY 139:278–287

    CAS  PubMed  Google Scholar 

  • Pacheco II, MacLeod RJ (2008) CaSR stimulates scretion of Wnt5a from colonic myofibroblasts to stimulate CDX2 and sucrase-isomaltase using Ror2 on intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 295:G748–G759

    Article  CAS  PubMed  Google Scholar 

  • Pan M, Lai C, Ho C (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 1:15–31

    Article  CAS  PubMed  Google Scholar 

  • Papa A, Mocci G, Scaldaferri F, Bonizzi M, Felice C, Anderisani G et al (2009) New therapeutic approach in inflammaory bowel disease. Eur Rev Med Pharmacol Sci 13:33–35

    PubMed  Google Scholar 

  • Papadakis KA, Targan SR (2000) Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med 51:289–298

    Article  CAS  PubMed  Google Scholar 

  • Pena-Ramos EA, Xiong YL (2001) Anitoxidative activity of whey protein hydrolysates in a liposomal system. J Dairy Sci 84:2577–2583

    Article  CAS  PubMed  Google Scholar 

  • Pierce KL, Lefkowitz RJ (2001) Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev 2:727–733

    Article  CAS  Google Scholar 

  • Quinn SJ, Ye C, Diaz R, Kifor O, Bai M, Vassilev P et al (1997) The Ca2+-sensing receptor: a target for polyamines. Am J Physiol Cell Physiol 273:C1315–C1323

    CAS  Google Scholar 

  • Reeds P, Odle J (1996) Pigs as models for nutrient functional interaction. In: Tumbleson ME, Schook LB (eds) Advances in swine in biomedical research. Plenum Press, New York, pp 709–711

    Chapter  Google Scholar 

  • Ronchi VP, Giudici AM, Mendieta JR, Caballero VJ, Chisari AN, Sanllorenti PM et al (2010) Oxidative stress in mouse liver caused by dietary amino acid deprivation: protective effect of methionine. J Physiol Biochem 66:93–103

    Article  CAS  PubMed  Google Scholar 

  • Royall D, Jeejeebhoy KN, Baker JP, Allard JP, Habal FM, Cunnane SC et al (1994) Comparison of amino acid vs peptide based enteral diets in active Crohn’s disease: clinical and nutritional outcome. Gut 35:783–787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito K, Jin DH, Ogawa T, Muramoto K, Hatakeyama E, Yasuhara T et al (2003) Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J Agric Food Chem 51:3668–3674

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama T, Musch MW, Ropeleski MJ, Tsubouchi H, Chang EB (2009) Glutamine increases autophagy under basal and stressed conditions in intestinal epithelial cells. Gastroenterology 136:924–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3:390–407

    Article  CAS  PubMed  Google Scholar 

  • Sartor RB (2007) Microbial and dietary factors in the pathogenesis of chronic, immune-mediated intestinal inflammation. In: Blumberg RS, Neurath MF (eds) Immune mechanisms in inflammatory bowel disease. Springer, New York, p 35

    Google Scholar 

  • Shimizu M (2004) Food-derived peptides and intestinal functions. Biofactors 21:43–47

    Article  CAS  PubMed  Google Scholar 

  • Sipos W, Duvigneau JC, Willheim M, Schilcher F, Hartl RT, Hofbauer G (2004) Systemic cytokine profile in feeder pigs suffering from natural postweaning mutisystemic wasting sydrome (PMWS) as determined by semiquanitiative RT-PCR and flow cytometric intracellular cytokine detection. Vet Immunol Immunopathol 99:63–71

    Article  CAS  PubMed  Google Scholar 

  • Son M, Ko JI, Kim WB, Jang HK, Kim BK (1998) Taurine can ameliorate inflammatory bowel disease in rats. Adv Exp Med Biol 442:291–298

    Article  CAS  PubMed  Google Scholar 

  • Son DO, Satsu H, Shimizu M (2005) Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Lett 579:4671–4677

    Article  CAS  PubMed  Google Scholar 

  • Son DO, Satsu H, Kiso Y, Totsuka M, Shimizu M (2008) Inhibitory effect of carnosine on interleukin-8 production in intestinal epithelial cells through translational regulation. Cytokine 42:265–276

    Article  CAS  PubMed  Google Scholar 

  • Suchner U, Kuhn KS, Furst P (2000) The scientific basis of immunonutrition. Proc Nutr Soc 59:553–563

    Article  CAS  PubMed  Google Scholar 

  • Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterizaton of free radical scavenging activities peptides derived from casein. J Nutri Biochem 11:128–131

    Article  CAS  Google Scholar 

  • Sundaram U, Wisel S, Coon S (2007) Neutral Na-amino acid cotransport is differentially regulated by glucocorticoids in the normal and chronically inflamed rabbit small intestine. Am J Physiol Gastrointest Liver Physiol. 292(2):G467–G474

    Article  CAS  PubMed  Google Scholar 

  • Te Velde AA, Verstege MI, Hommes DW (2006) Critical appraisal of the current practive in murine TNBS-induced colitis. Inflamm Bowel Dis 12:995–999

    Article  Google Scholar 

  • Teahon K, Smethurst P, Pearson M, Levi AJ, Bjarnason I (1991) The effect of elemental diet on intestinal permeability and inflammation in Crohn’s disease. Gastronenterology 101:84–89

    CAS  Google Scholar 

  • Terzic J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138:2101–2114

    Article  CAS  PubMed  Google Scholar 

  • van Deventer SJ (1999) Anti-TNF antibody treatment of Crohn’s disease. Ann Rheum Dis 58:1114–1120

    Google Scholar 

  • van Dullemen HM, van Deventer SJ, Hommes DW, Bijl HA, Jansen J, Tytgat GN, Woody J (1995) Treatment of Crohn’s Disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 109(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yao Y, Huang D, Hampson DR (2006a) Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Biol Chem 281:8864–8870

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G (2006b) Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin1 receptor signaling. Nat Immunol 7:139–147

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chandra R, Samsa LA, Gooch B, Fee BE, Cook JM et al (2011) Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am J Physiol Gastrointest Liver Physiol 300:G528–G537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ (2004) beta-arrestin inhibits NF-kB activity by means of its interaction with the NF-kB inhibitor IkBa. Proc Natl Acad Sci USA 101:8603–8607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf AM, Wolf D, Rumpold H, Moschem AR, Kaser A, Obrist P et al (2004) Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin Immunol 113:47–55

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T (2013) Nutrition and diet in inflammatory bowel disease. Curr Opin Gastroenterol 29:216–221

    Article  CAS  PubMed  Google Scholar 

  • Young D, Ibuki M, Nakamori T, Fan M, Mine Y (2012) Soy-derived di- and tripeptides alleviate colon and ileum inflammation in pigs with dextran sodium sulfate-induced colitis. J Nutri 142:363–368

    Article  CAS  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Mine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Hu, CA.A., Kovacs-Nolan, J. et al. Bioactive dietary peptides and amino acids in inflammatory bowel disease. Amino Acids 47, 2127–2141 (2015). https://doi.org/10.1007/s00726-014-1886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1886-9

Keywords

Navigation