Skip to main content
Log in

Determination and stereochemistry of proteinogenic and non-proteinogenic amino acids in Saudi Arabian date fruits

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Whereas an abundance of literature is available on the occurrence of common proteinogenic amino acids (AAs) in edible fruits of the date palm (Phoenix dactylifera L.), recent reports on non-proteinogenic (non-coded) AAs and amino components are scarce. With emphasis on these components we have analyzed total hydrolysates of twelve cultivars of date fruits using automated ion-exchange chromatography, HPLC employing a fluorescent aminoquinolyl label, and GC–MS of total hydrolysates using the chiral stationary phases Chirasil®-L-Val and Lipodex® E. Besides common proteinogenic AAs, relatively large amounts of the following non-proteinogenic amino acids were detected: (2S,5R)-5-hydroxypipecolic acid (1.4–4.0 g/kg dry matter, DM), 1-aminocyclopropane-1-carboxylic acid (1.3–2.6 g/kg DM), γ-amino-n-butyric acid (0.5–1.2 g/kg DM), (2S,4R)-4-hydroxyproline (130–230 mg/kg DM), l-pipecolic acid (40–140 mg/kg DM), and 2-aminoethanol (40–160 mg/kg DM) as well as low or trace amounts (<70 mg/kg DM) of l-ornithine, 5-hydroxylysine, β-alanine, and in some samples (<20 mg/kg DM) of (S)-β-aminoisobutyric acid and (<10 mg/kg DM) l-allo-isoleucine. In one date fruit, traces of α-aminoadipic acid could be determined. Enantiomeric analysis of 6 M DCl/D2O hydrolysates of AAs using chiral capillary gas chromatography–mass spectrometry revealed the presence of very low amounts of d-Ala, d-Asp, d-Glu, d-Ser and d-Phe (1.2–0.4 %, relative to the corresponding l-enantiomers), besides traces (0.2–1 %) of other d-AAs. The possible relevance of non-proteinogenic amino acids in date fruits is briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GC–MS:

Gas chromatography mass spectrometry

M:

Molecular mass (weight)

HPLC or LC:

High performance liquid chromatography

SIM:

Selected ion monitoring

AQC:

6-Aminoquinoyl-carbamyl-N-hydroxysuccinimidyl carbamate

AMQ:

6-Aminoquinoline

iTRAQ™:

Isobaric tag for relative and absolute quantitation

MSTFA:

N-methyl-N-trimethylsilyl-trifluoroacetamide

DCl/D2O:

Deuterium chloride in deuterium oxide

TFAA:

Trifluoroacetic acid anhydride

TFA:

Trifluoroacetyl

Me:

Methyl

Et:

Ethyl

Chirasil®-L-Val:

Dimethylpolysiloxane functionalized with l-Val-tert.butylamide

Lipodex® E:

(3-Butyl-2,6-pentyl)-γ-cyclodextrine

α-aminoadipic acid:

α-Aaa or a-AAA

β-Ala or b-Ala:

β-Alanine

Aba or a-AB:

α-Amino-n-butyric acid

β-Aba or β-Aib:

β-Aminoisobutyric acid

Acc:

1-Aminocyclopropane-1-carboxylic acid

Cit:

Citrulline

Cys:

Cystine

Eta:

Ethanolamine

GABA:

γ-Amino-n-butyric acid

Hyl or Hy-Lys:

5-Hydroxylysine

Hyp:

(2S,4R)-4-hydroxyproline (trans-4-hydroxy-l-proline)

Nle:

Norleucine (internal standard)

Orn:

Ornithine

Pip:

Pipecolic acid

Pip(OH):

(2S,5R)-5-hydroxypipecolic acid (trans-5-hydroxypipecolic acid)

Carn:

Carnosine

Csystat:

Cystathionine

1-M-His:

1-Methylhistidine

3-M-His:

3-Methylhistidine

P-Ser:

O-Phosporyl-l-serine

P-Eta:

Phosphoethanolamine

Sar:

Sarcosine

Tau:

Taurine

References

  • Adeghate E, Ponery AS (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34:1–6

    Article  CAS  PubMed  Google Scholar 

  • Al-Aswad MB (1971) The amino acid content of some Iraqi dates. J Food Sci 36:1019–1020

    Article  CAS  Google Scholar 

  • Al-Farsi M, Alasalvar C, Morris A, Baron M, Shahidi F (2005) Compositional and sensory characteristics of three native sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53:7586–7591

    Article  CAS  PubMed  Google Scholar 

  • Al-Hooti S, Sidhu JS, Qabazard H (1997) Physicochemical characteristics of five date fruit cultivars grown in the United Arab Emirates. Plant Food Hum Nutr 50:101–113

    Article  CAS  Google Scholar 

  • Ali H, Pätzold R, Brückner H (2006) Determination of l- and d-amino acids in smokeless tobacco products and tobacco. Food Chem 99:803–812

    Article  CAS  Google Scholar 

  • Ali HSM, Pätzold R, Brückner H (2010) Gas chromatographic determination of amino acid enantiomers in bottled and aged wines. Amino Acids 38:951–958

    Article  CAS  PubMed  Google Scholar 

  • Al-Rawi N, Markakis P, Bauer DH (1967) Amino acid composition of Iraqi dates. J Sci Food Agric 18:1–2

    Article  CAS  PubMed  Google Scholar 

  • Al-Shahib W, Marshall RJ (2003) The fruit of the date palm: its possible use as the best food for the future? Int J Food Sci Nutr 54:247–259

    Article  PubMed  Google Scholar 

  • AOAD (2012) Arab agricultural statistics yearbook, vol 32, table 72 (dates), Arab Organization for Agricultural Development (AOAD), Khartoum, p 111

  • Asen S, Thompson JF, Morris CJ, Irreverre F (1959) Isolation of β-aminoisobutyric acid from bulbs of Iris tingitana var. Wedgewood. J Biol Chem 234:343–346

    CAS  Google Scholar 

  • Auda H, Al-Wandawi H, Al-Adhami L (1976) Protein and amino acid composition of three varieties of Iraqi dates at different stages of development. J Agric Food Chem 24:365–367

    Article  CAS  PubMed  Google Scholar 

  • Bell EA (2003) Review. Nonprotein amino acids in plants: significance in medicine, nutrition, and agriculture. J Agric Food Chem 51:2854–2865

    Article  CAS  PubMed  Google Scholar 

  • Bergmann H, Machelett B, Leinhos V (1994) Effect of natural amino alcohols on the yield of essential amino acids and the amino acid pattern in stressed barley. Amino Acids 7:327–331

    Article  CAS  PubMed  Google Scholar 

  • Booij I, Piombo G, Risterucci JM, Thomas D, Ferry M (1993) Sugars and free amino acid compositions of five cultivars of dates from offshoots or vitroplants in open fields. J Agric Food Chem 41:1553–1557

    Article  CAS  Google Scholar 

  • Bouaziz MA, Besbes S, Blecker C, Wathelet B, Deroanne C, Attia H (2008) Protein and amino acid profiles of Tunesian Deglet Nour and Allig date palm fruit seeds. Fruits 63:37–43

    Article  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plans: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Brenner SA, Romeo JT (1986) Fungitoxic effects of nonprotein imino acids on growth of saprophytic fungi isolated from the leaf surface of Calliandra haematocephala. Appl Environ Microbiol 51:690–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brückner H, Fujii N (eds) (2011) d-Amino acids in chemistry, life sciences, and biotechnology. Verlag Helvetica Chimica Acta, Zürich, and Wiley-VCH, Weinheim

  • Brückner H, Westhauser T (2003) Chromatographic determination of l- and d-amino acids in plants. Amino Acids 24:43–55

    Article  PubMed  Google Scholar 

  • Burroughs LF (1957) 1-Aminocylcopropane-1-carboxylic acid: a new amino-acid in perry pears and cider apples. Nature 179:360–361

    Article  CAS  PubMed  Google Scholar 

  • Cherkofsky ISC (1995) 1-Aminocyclopropanecarboxlic acid: mouse to man interspecies pharmacokinetic comparison and allometric relationships. J Pharm Sci 84:1231–1235

    Article  CAS  PubMed  Google Scholar 

  • D’Aniello G, Grieco N, Di Filippo MA, Cappiello F, Topo E, D’Aniello E, Ronsini S (2007) Reproductive implication of d-aspartic acid in human pre-ovulatory follicular fluid. Hum Reprod 22:3178–3183

    Article  PubMed  Google Scholar 

  • Dardenne G, Sørensen JCH (1974) γ-l-Glutamyl-l-pipecolic acid in Gleditsia caspica. Phytochemistry 13:1515–1517

    Article  CAS  Google Scholar 

  • del Favero S, Roschel H, Solis MY, Hayashi AP, Artioli GG, Otaduy MC, Benatti FB, Harris RC, Wise JA, Leite CC, Pereira RM, de Sá-Pinto AL, Lancha-Junior AH, Gualano B (2011) Beta-alanine (CarnosynTM) supplementation in elderly subjects (60–80 years): effects on muscle carnosine content and physical capacity. Amino Acids 43:49–56

    Article  PubMed Central  PubMed  Google Scholar 

  • Dettmer K, Nürnberger N, Kaspar H, Gruber MA, Almstetter MF, Oefner PJ (2011) Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem 399:1127–1139

    Article  CAS  PubMed  Google Scholar 

  • El-Sohaimy SA, Hafez EE (2010) Biochemical and nutritional characterization of date palm fruits (Phoenix dactylifera L.). J Appl Sci Res 6:1060–1067

    CAS  Google Scholar 

  • Fayadh JM, Al-Showiman SS (1990) Chemical composition of date palm (Phoenix dactylifera L.). J Chem Soc Pak 12:84–103

    CAS  Google Scholar 

  • Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15:174–176

    Article  CAS  PubMed  Google Scholar 

  • Frank H, Woiwode W, Nicholson GJ, Bayer E (1979) Determination of optical purity of amino acids in proteins. In: Kein E, Kein PP (eds) Stable isotopes. Academic Press, New York, pp 165–172

    Google Scholar 

  • Friedman M, Levin CE (2012) Nutritional and medicinal aspects of d-amino acids. Amino Acids 42:1553–1582

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Sakurai A (1997) Conversion of lysine to l-pipecolic acid induces flowering in Lemna paucicostata 151. Plant Cell Physiol 38:1278–1280

    CAS  Google Scholar 

  • Gartler S, Dobzhansky T (1954) Excretion in human urine of an unknown amino-acid derived from dates. Nature 174:553

    Article  CAS  Google Scholar 

  • Gerhardt J, Nicholson GJ (1994) Unambiguous determination of the optical purity of peptides via GC-MS. In: Hodges RS, Smith JA (eds) Peptides: chemistry, structure and biology. Escom Science Publisher, Leiden, pp 241–243

    Chapter  Google Scholar 

  • Gerhardt J, Nicholson GJ (2001) Validation of a GC-MS method for determination of the optical purity of peptides. In: Martinez J, Fehrentz J-A (eds) Peptides 2000. Editions EDK, Paris, pp 563–564

    Google Scholar 

  • Grobbelaar N, Pollard JK, Steward FC (1955) New soluble nitrogen compounds (amino- and imino-acids and amides) in plants. Nature 175:703–708

    Article  CAS  Google Scholar 

  • Hagiwara H, Seki T, Ariga T (2004) The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozoticin-induced diabetic rates. Biosci Biotechnol Biochem 68:444–447

    Article  CAS  PubMed  Google Scholar 

  • Iezhitsa IN, Spasov AA, Zhuravleva NV, Sinolitskii MK, Voronin SP (2004) Comparative study of the efficacy of potassium magnesium l-, d-, and dl-aspartate stereoisomers in overcoming digoxin-and furosemide-induced potassium and magnesium depletions. Magnes Res 17:276–292

    CAS  PubMed  Google Scholar 

  • Inanobe A, Furukawa H, Gouaux E (2005) Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47:71–84

    Article  CAS  PubMed  Google Scholar 

  • Ishurd O, Zahid M, Xiao P, Pan Y (2004) Protein and amino acids content of Libyan dates at three stages of development. J Sci Food Agric 84:481–484

    Article  CAS  Google Scholar 

  • Jaworska M, Stańczyk M, Wilk M, Kłaczkow G, Anuszewska E, Barzał J, Rzepecki P (2012) New approach for amino acid profiling in human plasma by selective fluorescence derivatization. Amino Acids 43:1653–1661

    Article  CAS  PubMed  Google Scholar 

  • Kaspar H, Dettmer K, Chan Q, Daniels S, Nimkar S, Daviglus ML, Stamler J, Elliott P, Oefner PJ (2009) Urinary amino acid analysis: A comparison of iTRAQ®-LC-MS/MS, GC-MS, and amino acid analyzer. J Chromatogr B 877:1838–1846

    Article  CAS  Google Scholar 

  • Kieliszewski M, Lamport DTA (1994) Extensin repetitive motifs, functional sites, post-translational code, and phylogeny. Plant J 5:157–172

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S, Lee Y-S (2009) Enolization and racemization reaction of glucose and fructose on heating with amino-acid enantiomers and the formation of melanoidins as a result of the Maillard reaction. Amino Acids 36:465–474

    Article  CAS  PubMed  Google Scholar 

  • Kite GC, Ireland H (2002) Non-protein amino acids of Bocoa (Leguminosae; Papilionoideae). Phytochemistry 59:163–168

    Article  CAS  PubMed  Google Scholar 

  • Kiyoto M, Saito S, Hattori K, Cho N-S, Hara T, Yagi Y, Aoyama M (2008) Inhibitory effects of l-pipecolic acid from the edible mushroom, Sarcodon aspratus, on angiotensin I-converting enzyme. J Wood Sci 54:179–181

    Article  CAS  Google Scholar 

  • König WA, Krebber R, Mischnick P (1989) Cyclodextrins as chiral stationary phases in capillary gas chromatography. Part V: Octakis (3-O-butyryl-2,6-di-O-pentyl)-γ-cyclodextrin. J High Res Chromatogr 12(35):732–738

    Article  Google Scholar 

  • Liardon R, Ledermann S, Ott U (1981) Determination of d-amino acids by deuterium labelling and selected ion monitoring. J Chromatogr 203:385–395

    Article  CAS  Google Scholar 

  • Lindstedt S, Lindstedt G (1959) On the formation of 5-hydroxypipepcolic acid from 4-hydroxy-dl-lysine. Arch Biochem Biophys 85:565–566

    Article  CAS  PubMed  Google Scholar 

  • Mester L, Szabados L, Mester M, Yadavi N (1979) Identification par RMN13C dans les feuilles de Xylia xylocarpa de l’acide trans-5-hydroxypipecolique, nouvel inhibiteur de l’agrégation plaquettaire par la serotonine. Planta Med 35:339–341

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Homma H, Lee JA, Imai K (1999) d-Aspartate stimulation of testosterone synthesis in rat Leydig cells. FEBS Lett 444:160–164

    Article  CAS  PubMed  Google Scholar 

  • Nahum-Levy R, Fossum LH, Skolnick P, Benveniste M (1999) Putative partial agonist 1-aminocyclopropanecarboxylic acid acts concurrently as a glycine-site agonist and a glutamate-site antagonist at N-methyl-d-aspartate receptors. Mol Pharmacol 56:1207–1218

    CAS  PubMed  Google Scholar 

  • Pätzold R, Brückner H (2006) Gas chromatographic determination and mechanism of formation of d-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids 31:63–72

    Article  PubMed  Google Scholar 

  • Peiser G, Yang SF (1998) Evidence for 1-(malonylamino)cyclopropane-1-carboxylic acid being the major conjugate of aminocyclopropane-1-carboxylic acid in tomato fruit. Plant Physiol 116:1527–1532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piez KA, Irreverre F, Wolf HL (1956) The separation and determination of cyclic imino acids. J Biol Chem 223:687–697

    CAS  PubMed  Google Scholar 

  • Powers ME, Yarrow JF, McCoy SC, Borst SE (2008) Growth hormone isoform responses to GABA ingestion at rest and after exercise. Med Sci Sports Exerc 40:104–110

    Article  CAS  PubMed  Google Scholar 

  • Przegaliński E, Tatarczyńska E, Dereń-Wesołek A, Chojnacka-Wojcik E (1997) Antidepressant—like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 36:31–37

    Article  PubMed  Google Scholar 

  • Rathinasabapathi B (2002) Propionate, a source of ß-alanine, is an inhibitor of ß-alanine methylation in Limonium latifolium, Plumbaginaceae. J Plant Physiol 159:671–674

    Article  CAS  Google Scholar 

  • Rinderknecht H (1959) The free amino acid pattern of dates in relation to their darkening during maturation and storage. J Food Sci 24:298–304

    Article  CAS  Google Scholar 

  • Russell AL, McCarty MF (2000) dl-phenylalanine markedly potentiates opiate analgesia—an example of nutrient/pharmaceutical up-regulation of the endogenous analgesia system. Med Hypotheses 55:283–288

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Kume H, Nemoto A, Narisawa S, Takahashi N (1997) Ethanolamine modulates the rate of rat hepatocyte proliferation in vitro and in vivo. Proc Natl Acad Sci USA 94:7320–7325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasamura T, Matsuda A, Kokuba Y (1998) Tumor growth inhibition and nutritional effect of D-amino acid solution in AH109A hepatoma-bearing rats. J Nutr Sci Vitaminol (Tokyo) 44:79–87

    Article  CAS  Google Scholar 

  • Spackman DH, Stein WH, Moore S (1958) Automated recording apparatus for use in chromatography of amino acids. Anal Chem 30:190–1206

    Article  Google Scholar 

  • Topo E, Soricelli A, D’Aniello A, Ronsini S, D’Aniello G (2009) The role and molecular mechanisms of d-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod Biol Endocrinol 7:120. doi:10.1186/1477-7827-7-120

    Article  PubMed Central  PubMed  Google Scholar 

  • Topo E, Soricelli A, DI Maio A, D’Aniello E, DI Fore MM, D’Aniello A (2010) Evidence for the involvement of d-aspartic acid in learning and memory of rats. Amino Acids 38:1561–1569

    Article  CAS  PubMed  Google Scholar 

  • Tsai GE, Yang P, Chang Y-C, Chong M-Y (2006) d-Alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 59:230–234

    Article  CAS  PubMed  Google Scholar 

  • Vähätalo M-L, Virtanen AI (1957) A new cyclic α-aminocarboxylic acid in berries of cowberry. Acta Chem Scand 11:741–756

    Article  Google Scholar 

  • Vance JE (2008) Thematic review series: glycerolipids. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 49:1377–1387

    Article  CAS  PubMed  Google Scholar 

  • Vranova V, Loijkova L, Rejsek K, Formanek P (2013) Significance of the natural occurrence of l- versus d-pipecolic acid: a review. Chirality 25:823–831

    Article  CAS  PubMed  Google Scholar 

  • Witkop P, Foltz CM (1956) The configuration of 5-hydroxypipecolic acid from dates. J Am Chem Soc 79:192–197

    Article  Google Scholar 

  • Wolosker H, D’Aniello A, Snyder SH (2000) D-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100:183–189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by NSTIP strategic technologies program number 11-AGR 1600-2 of the Kingdom of Saudi Arabia. HB acknowledges his position as a Visiting Professor and Scientific Consultant at KSU. Special thanks are addressed to Katja Dettmer, University of Regensburg, and Małgorzata Jaworska, National Medicines Institute, Warsaw, Jürgen Gerhardt, C.A.T. Tübingen, and Frank Gutjahr, Chromatographie Balingen, for valuable discussions and assistance in parts of the work, in particular disproving or confirming the presence of tentatively assigned amino compounds in selected date samples.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Brückner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H.S.M., Alhaj, O.A., Al-Khalifa, A.S. et al. Determination and stereochemistry of proteinogenic and non-proteinogenic amino acids in Saudi Arabian date fruits. Amino Acids 46, 2241–2257 (2014). https://doi.org/10.1007/s00726-014-1770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1770-7

Keywords

Navigation