Skip to main content
Log in

Putrescine overproduction does not affect the catabolism of spermidine and spermine in poplar and Arabidopsis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra × maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse ornithine decarboxylase cDNA either under the control of a constitutive (in poplar) or an inducible (in Arabidopsis) promoter. The transgenic poplar cells produced and accumulated 8–10 times higher amounts of Put than the non-transgenic cells, whereas the Arabidopsis seedlings accumulated up to 40-fold higher amounts of Put; however, in neither case the cellular Spd or Spm increased consistently. The rate of Spd and Spm catabolism and the half-life of cellular Spd and Spm were measured by pulse-chase experiments using [14C]Spd or [14C]Spm. Spermidine half-life was calculated to be about 22–32 h in poplar and 52–56 h in Arabidopsis. The half-life of cellular Spm was calculated to be approximately 24 h in Arabidopsis and 36–48 h in poplar. Both species were able to convert Spd to Spm and Put, and Spm to Spd and Put. The rates of Spd and Spm catabolism in both species were several-fold slower than those of Put, and the overproduction of Put had only a small effect on the overall rates of turnover of Spd or Spm. There was little effect on the rates of Spd to Spm conversion as well as the conversion of Spm into lower polyamines. While Spm was mainly converted back to Spd and not terminally degraded, Spd was removed from the cells largely through terminal catabolism in both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The enzymes commonly called polyamine oxidases, which oxidize Put, Spd, Spm, acetyl-Spd and acetyl-Spm, have been assigned different EC numbers depending upon the source or characterization of the substrate preference; the terminology sometimes appears confusing. A few examples of the confusion about nomenclature of different polyamine oxidases are cited here: Spermine oxidase (EC 1.5.3.16), http://www.brenda-enzymes.org/php/result_flat.php4?ecno=1.5.3.16; Polyamine oxidase (EC 1.5.3.3), http://www.ebi.ac.uk/intenz/query?cmd=SearchEC&ec=1.5.3.3; AtPAO1 (EC# 1.5.3.16), http://www.uniprot.org/uniprot/Q9FNA2; AtPAO2 (EC# 1.5.3.?), http://www.uniprot.org/uniprot/Q9SKX5, http://enzyme.expasy.org/EC/1.5.3; AtPAO3 (EC# 1.5.3.17), http://www.uniprot.org/uniprot/Q9LYT1; AtPAO4 (EC# 1.5.3.16), http://www.uniprot.org/uniprot/Q8H191; AtPAO5 ((EC# 1.5.3.?), http://www.uniprot.org/uniprot/Q9SU79, http://enzyme.expasy.org/EC/1.5.3; ZmPAO1 (EC# 1.5.3.14/1.5.3.15?), http://www.ncbi.nlm.nih.gov/nuccore/NM_001111636; Non-specific polyamine oxidase (EC 1.5.3.17), http://enzyme.expasy.org/EC/1.5.3.17; N8-acetylspermidine oxidase, http://www.brenda-enzymes.org/php/result_flat.php4?ecno=1.5.3.15; N(1)-acetylpolyamine oxidase (EC 1.5.3.13), http://enzyme.expasy.org/EC/1.5.3.13; N-acetylpolyamine oxidase EC 1.5.3.11 (deleted entry), http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/5/3/11.html, http://www.brenda-enzymes.org/php/result_flat.php4?ecno=1.5.3.11.

References

  • Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6:243–250

    Article  PubMed Central  PubMed  Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC, Del Valle S, Altabella T, Tiburcio AF, Marco F, Ferrando A, Espasandin FD, Gonzalez ME, Ruiz OA, Carrasco P (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564

    Article  CAS  PubMed  Google Scholar 

  • Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125:2139–2153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhatnagar P, Minocha R, Minocha SC (2002) Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism. Plant Physiol 128:1455–1469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casero RA, Pegg A (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen SS (1998) A Guide to Polyamines. Oxford University Press, New York

    Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • DeScenzo RA, Minocha SC (1993) Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol 22:113–127

    Article  CAS  PubMed  Google Scholar 

  • Fellenberg C, Ziegler J, Handrick V, Vogt T (2012) Polyamine homeostasis in wild type and phenol amide deficient Arabidopsis thaliana stamens. Front Plant Sci 3:180. doi:10.3389/fpls.2012.00180

    Article  PubMed Central  PubMed  Google Scholar 

  • Fincato P, Moschou PN, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis KA, Tavladoraki P (2011) Functional diversity inside the Arabidopsis polyamine oxidase gene family. J Exp Bot 62:1155–1168

    Article  CAS  PubMed  Google Scholar 

  • Franceschetti M, Fornalé S, Tassonia A, Zuccherelli K, Mayer MJ, Bagni N (2004) Effects of spermidine synthase overexpression on polyamine biosynthetic pathway in tobacco plants. J Plant Physiol 161:989–1001

    Article  CAS  PubMed  Google Scholar 

  • Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T (2011) Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Biol 11:55–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grienenberger E, Besseau S, Geoffroy P, Debayle D, Heintz D, Lapierre C, Pollet B, Heitz T, Legrand M (2009) A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J 58:246–259

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Pal RK, Rajam MV (2013) Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene. J Plant Physiol 170:987–995

    Article  CAS  PubMed  Google Scholar 

  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem 48:506–512

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2011) Identification and assays of polyamine transport systems in Escherichia coli and Saccharomyces cerevisiae. Methods Mol Biol 720:295–308

    Article  PubMed  Google Scholar 

  • Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152

    Article  CAS  PubMed  Google Scholar 

  • Kahana C, Nathans D (1985) Nucleotide sequence of murine ornithine decarboxylase. Proc Natl Acad Sci USA 82:1673–1677

    Article  CAS  PubMed  Google Scholar 

  • Kakkar RK, Rai VK, Nagar PK (1997) Polyamine uptake and translocation in plants. Biol Plant 40:481–491

    Article  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  CAS  PubMed  Google Scholar 

  • Majumdar R, Shao L, Minocha R, Long S, Minocha SC (2013) Ornithine: the overlooked molecule in the regulation of polyamine metabolism. Plant Cell Physiol 54:990–1004

    Article  CAS  PubMed  Google Scholar 

  • Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413

    Article  CAS  PubMed  Google Scholar 

  • Minocha SC (1988) Relationship between polyamine and ethylene biosynthesis in plants and its significance for morphogenesis in cell cultures. Adv Exp Med Biol 250:601–616

    Article  CAS  PubMed  Google Scholar 

  • Minocha R, Long S (2004) Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization. J Chromatogr A 1035:63–73

    Article  CAS  PubMed  Google Scholar 

  • Minocha R, Shortle WC, Long LS, Minocha SC (1994) A rapid and reliable procedure for extraction of polyamines and inorganic ions from plant tissues. J Plant Growth Regul 13:187–193

    Article  CAS  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Minocha SC (2009) Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture. Plant Physiol Biochem 47:262–271

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Cherry S, Minocha R, Majumdar R, Thangavel P, Long S, Minocha SC (2010a) The response of high and low polyamine-producing cell lines to aluminum and calcium stress. Plant Physiol Biochem 48:612–620

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Minocha SC (2010b) Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 38:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008a) Plant polyamine catabolism. Plant Signal Behav 3:1061–1066

    Article  PubMed Central  PubMed  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008b) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015

    Article  CAS  PubMed  Google Scholar 

  • Mulangi V, Chibucos MC, Phuntumart V, Morris PF (2012a) Kinetic and phylogenetic analysis of plant polyamine uptake transporters. Planta 236:1261–1273

    Article  CAS  PubMed  Google Scholar 

  • Mulangi V, Phuntumart V, Aouida M, Ramotar D, Morris P (2012b) Functional analysis of OsPUT1, a rice polyamine uptake transporter. Planta 235:1–11

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847

    Article  CAS  PubMed  Google Scholar 

  • Noh EW, Minocha SC (1994) Expression of a human S-adenosylmethionine decarboxylase cDNA in transgenic tobacco and its effects on polyamine biosynthesis. Transgenic Res 3:26–35

    Article  CAS  PubMed  Google Scholar 

  • Nölke G, Schneider B, Agdour S, Drossard J, Fischer R, Schillberg S (2008) Modulation of polyamine biosynthesis in transformed tobacco plants by targeting ornithine decarboxylase to an atypical subcellular compartment. Open Biotechnol J 2:183–189

    Article  Google Scholar 

  • Ohe M, Kobayashi M, Niitsu M, Bagni N, Matsuzaki S (2005) Analysis of polyamine metabolism in soybean seedlings using 15N-labelled putrescine. Phytochemistry 66:523–528

    Article  CAS  PubMed  Google Scholar 

  • Page AF, Mohapatra S, Minocha R, Minocha SC (2007) The effects of genetic manipulation of putrescine biosynthesis on transcription and activities of the other polyamine biosynthetic enzymes. Physiol Plant 129:707–724

    Article  CAS  Google Scholar 

  • Page AF, Minocha R, Minocha SC (2012) Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells. Amino Acids 42:295–308

    Article  CAS  PubMed  Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    Article  CAS  Google Scholar 

  • Quan Y, Minocha R, Minocha SC (2002) Genetic manipulation of polyamine metabolism in poplar II: effects on ethylene biosynthesis. Plant Physiol Biochem 40:929–937

    Article  CAS  Google Scholar 

  • Rambla JL, Vera-Sirera F, Blázquez MA, Carbonell J, Granell A (2010) Quantitation of biogenic tetra-amines in Arabidopsis thaliana. Anal Biochem 397:208–211

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193:130–135

    Article  PubMed  Google Scholar 

  • Takahashi Y, Cong R, Sagor GH, Niitsu M, Berberich T, Kusano T (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep 29:955–965

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Rossi MN, Saccuti G, Perez-Amador MA, Polticelli F, Angelini R, Federico R (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol 141:1519–1532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tavladoraki P, Cervelli M, Antonangeli F, Minervini G, Stano P, Federico R, Mariottini P, Polticelli F (2011) Probing mammalian spermine oxidase enzyme–substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino Acids 40:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42:411–426

    Article  CAS  PubMed  Google Scholar 

  • Theiss C, Bohley P, Bisswanger H, Voigt J (2004) Uptake of polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effect on ornithine decarboxylase activity. J Plant Physiol 161:3–14

    Article  CAS  PubMed  Google Scholar 

  • Thu-Hang P, Bassie L, Safwat G, Trung-Nghia P, Christou P, Capell T (2002) Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-l-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol 129:1744–1754

    Article  PubMed Central  PubMed  Google Scholar 

  • Tisi A, Angelini R, Cona A (2011) Does polyamine catabolism influence root development and xylem differentiation under stress conditions? Plant Signal Behav 6:1844–1847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnu Prasanth V, Chakravarthi DVN, Vishnu Kiran T, Venkateswara Rao Y, Panigrahy M, Mangrauthia SK, Viraktamath BC, Subrahmanyam D, Voleti SR, Sarla N (2012) Evaluation of rice germplasm and introgression lines for heat tolerance. Ann Biol Res 11:5060–5068

    Google Scholar 

  • Wargo PM, Minocha R, Wong BL, Long RP, Horsley SB, Hall TJ (2002) Measuring changes in stress and vitality indicators in limed sugar maple on the Allegheny Plateau in north-central Pennsylvania. Can J For Res 32:629–641

    Article  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  CAS  PubMed  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This is a Scientific Contribution Number 2509 From the NHAES.

The authors would like to thank Stephanie Long and Ben Mayer from the USDA-Forest Service for technical help in the analysis of PAs, and Bernadette Glasheen and Suneet Bains for producing the poplar transgenic cell line as a part of their undergraduate research. L.S. would also like to thank Sarah Greenberg and Boubker Barchi for help in sample collection of Arabidopsis plants for HPLC analysis. This study was partially funded by NH-Agricultural Experiment Station, USDA Forest Service (NRS), UNH Graduate Research Enhancement Awards, Graduate School Summer TA fellowship (Raj M and L.S.) and an Edith Jones Fellowship to P.B.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Minocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, L., Bhatnagar, P., Majumdar, R. et al. Putrescine overproduction does not affect the catabolism of spermidine and spermine in poplar and Arabidopsis. Amino Acids 46, 743–757 (2014). https://doi.org/10.1007/s00726-013-1581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1581-2

Keywords

Navigation