Skip to main content

Advertisement

Log in

Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N 2-acetylOrn:N-acetyl-Glu acetyltransferase, N 2-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the regulation of this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadjieva A, Pauwels K, Hilven P, Crabeel M (2001) A new yeast metabolon involving at least the two first enzymes of arginine biosynthesis: acetylglutamate synthase activity requires complex formation with acetylglutamate kinase. J Biol Chem 276:42869–42880

    Article  PubMed  CAS  Google Scholar 

  • Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  Google Scholar 

  • Azaiez A, Boyle B, Levée V, Séguin A (2009) Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Microbe Interact 22:190–200

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar P, Glasheen BM, Bains SK, Long S, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125:2139–2153

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar P, Minocha R, Minocha SC (2002) Transgenic manipulation of the metabolism of polyamines in poplar cells: the catabolism of putrescine. Plant Physiol 128:1455–1469

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Caldovic L, Tuchman M (2003) N-Acetylglutamate and its changing role through evolution. Biochem J 372:279–290

    Article  PubMed  CAS  Google Scholar 

  • Camacho JA, Rioseco-Camacho N, Andrade D, Porter J, Kong J (2003) Cloning and characterization of human ORNT2: a second mitochondrial ornithine transporter that can rescue a defective ORNT1 in patients with the hyperornithinemia–hyperammonemia–homocitrullinuria syndrome, a urea cycle disorder. Mol Genet Metab 79:257–271

    Article  PubMed  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee R, Yuan L (2006) Directed evolution of metabolic pathways. Trends Biotechnol 24:28–38

    Article  PubMed  CAS  Google Scholar 

  • Christopher ME, Miranda M, Major IT, Constabel CP (2004) Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219:936–947

    Article  PubMed  CAS  Google Scholar 

  • DeScenzo RA, Minocha SC (1993) Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol 22:113–127

    Article  PubMed  CAS  Google Scholar 

  • Duplessis S, Major I, Martin F, Séguin A (2009) Poplar and pathogen interactions: insights from Populus genome-wide analyses of resistance and defense gene families and gene expression profiling. Crit Rev Plant Sci 28:309–334

    Article  CAS  Google Scholar 

  • Franceschetti M, Fornalè S, Tassoni A, Zuccherelli K, Mayer MJ, Bagni N (2004) Effects of spermidine synthase overexpression on polyamine biosynthetic pathway in tobacco plants. J Plant Physiol 161:989–1001

    Article  PubMed  CAS  Google Scholar 

  • Grennan AK (2006) Regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 142:1343–1345

    Article  PubMed  CAS  Google Scholar 

  • Hoyos ME, Palmieri L, Wertin T, Arrigoni R, Polacco JC, Palmieri F (2003) Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant J 33:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Jumtee K, Bamba T, Okazawa A, Fukusaki E, Kobayashi A (2008) Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thaliana. J Exp Bot 59:1187–1200

    Article  PubMed  CAS  Google Scholar 

  • Kalamaki MS, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I, Aggelis A, Carrillo-Lopez A, Rubio-Cabetas MJ, Kanellis AK (2009a) Over-expression of a tomato N-acetyl-l-glutamate synthase gene (SINAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J Exp Bot 60:1859–1871

    Article  PubMed  CAS  Google Scholar 

  • Kalamaki MS, Merkouropoulos G, Kanellis AK (2009b) Can ornithine accumulation modulate abiotic stress tolerance in Arabidopsis? Plant Signal Behav 4:1099–1101

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He LX, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Minocha SC (1998) Transgenic manipulation of polyamine metabolism. In: Lindsey K (ed) Transgenic research in plants. Harwood, UK, pp 187–199

    Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) Advances in polyamine research in 2007. J Plant Res 120:345–350

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413

    Article  PubMed  CAS  Google Scholar 

  • Mayer M, Michael AJ (2003) Polyamine homeostasis in transgenic plants overexpressing ornithine decarboxylase includes ornithine limitation. J Biol Chem 134:765–774

    CAS  Google Scholar 

  • McKay G, Shargool PD (1981) Purification and characterization of N-acetyl-glutamate-5-phosphotransferase EC 2.7.2.8. from pea (Pisum sativum) cotyledons. Biochem J 195:71–81

    PubMed  CAS  Google Scholar 

  • Minocha R, Shortle WC, Lawrence GB, David MB, Minocha SC (1997) A relationship among foliar chemistry, foliar polyamines, and soil chemistry in red spruce trees growing across the Northeastern United States. Plant Soil 191:109–122

    Article  CAS  Google Scholar 

  • Minocha R, Aber JD, Long S, Magill AH, McDowell W (2000) Foliar polyamine and inorganic ion content in relation to soil and soil solution chemistry in two fertilized forest stands at the Harvard Forest, Massachusetts. Plant Soil 222:119–137

    Article  CAS  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Minocha SC (2009) Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture. Plant Physiol Biochem 47:262–271

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Minocha SC (2010) Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 38:1117–1129

    Article  PubMed  CAS  Google Scholar 

  • Moreau C, Aksenov N, Lorenzo MG, Segerman B, Funk C, Nilsson P, Jansson S, Tuominen H (2005) A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biol 6:R34

    Article  PubMed  Google Scholar 

  • Morris SM Jr (2006) Arginine: beyond protein. Am J Clin Nutr 83:508S–512S

    PubMed  CAS  Google Scholar 

  • Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137:1602S–1609S

    PubMed  CAS  Google Scholar 

  • Page AF, Mohapatra S, Minocha R, Minocha SC (2007) The effects of genetic manipulation of putrescine biosynthesis on transcription and activities of the other polyamine biosynthetic enzymes. Physiol Plant 129:707–724

    Article  CAS  Google Scholar 

  • Park SC, Keathley DE, Han KH (2008) Transcriptional profiles of the annual growth cycle in Populus deltoides. Tree Physiol 28:321–329

    Article  PubMed  CAS  Google Scholar 

  • Pauwels K, Abadjieva A, Hilven P, Stankiewicz A, Crabeel M (2003) The N-acetylglutamate synthase/N-acetylglutamate kinase metabolon of Saccharomyces cerevisiae allows co-ordinated feedback regulation of the first two steps in arginine biosynthesis. Eur J Biochem 270:1014–1024

    Article  PubMed  CAS  Google Scholar 

  • Quan Y, Minocha R, Minocha SC (2002) Genetic manipulation of polyamine metabolism in poplar II: effects on ethylene biosynthesis. Plant Physiol Biochem 40:929–937

    Article  CAS  Google Scholar 

  • Ramon-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V (2002) Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure (Camb) 10:329–342

    Article  CAS  Google Scholar 

  • Rishi AS, Munir S, Kapur V, Nelson ND, Goyal A (2004) Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray. Planta 220:296–306

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Schafleitner R, Gaudin A, Rosales ROG, Aliaga CAA, Bonierbale M (2007) Proline accumulation and real time PCR expression analysis of genes encoding enzymes of proline metabolism in relation to drought tolerance in Andean potato. Acta Physiol Plant 29:19–26

    Article  CAS  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–187

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress response. Curr Opin Plant Biol 10:296–302

    Article  PubMed  CAS  Google Scholar 

  • Shargool PD, Jain JC, McKay G (1988) Ornithine biosynthesis, and arginine biosynthesis and degradation in plant cells. Phytochemistry 27:1571–1574

    Article  CAS  Google Scholar 

  • Slocum RD (2005) Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem 43:729–745

    Article  PubMed  CAS  Google Scholar 

  • Smith SS, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136:2687–2699

    Article  PubMed  CAS  Google Scholar 

  • Street NR, Skogström O, Sjödin A, Tucker J, Rodriguez-Acosta M, Nilsson P, Jansson S, Taylor G (2006) The genetics and genomics of the drought response in Populus. Plant J 48:321–341

    Article  PubMed  CAS  Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  PubMed  CAS  Google Scholar 

  • Taylor G, Street NR, Tricker PJ, Sjödin A, Graham L, Skogström O, Calfapietra C, Scarascia-Mugnozza G, Scarascia-Mugnozza G, Jansson S (2005) The transcriptome of Populus in elevated CO2. New Phytol 167:143–154

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Ventura G, De Bandt JP, Segaud F, Perret C, Robic D, Levillain O, Le Plenier S, Godard C, Cynober L, Moinard C (2009) Overexpression of ornithine aminotransferase: consequences on amino acid homeostasis. Br J Nutr 101:843–851

    Article  PubMed  CAS  Google Scholar 

  • Wellendorph P, Hansen KB, Balsgaard A, Greenwood JR, Egebjerg J, Brauner-Osborne H (2005) Deorphanization of GPRC6A: a promiscuous l-alpha-amino acid receptor with preference for basic amino acids. Mol Pharmacol 67:589–597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Karen Carlton for help in the RT-qPCR and to the UNH Hubbard Genome Center for sequencing. This work was partially supported by the USDA-NRI award # 2002-35318-12674, the NH Agricultural Experiment Station, and the US Forest Service, Northern Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Minocha.

Additional information

Scientific contribution number 2374 from the NH Agricultural Experiment Station.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, A.F., Minocha, R. & Minocha, S.C. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells. Amino Acids 42, 295–308 (2012). https://doi.org/10.1007/s00726-010-0807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0807-9

Keywords

Navigation