Skip to main content

Advertisement

Log in

Chromatin remodeling by polyamines and polyamine analogs

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Natural polyamines are involved in many molecular processes, including maintenance of DNA structure and RNA processing and translation. Our aim here is to present an overview of the literature concerning the significance of polyamines in the modulation of chromatin arrangement and the transcriptional regulation of gene expression. The pleiotropic picture emerging from the published data highlights that these polycations take part in apparently diverging effects, possibly depending on the heterogeneous experimental settings described, and on a methodological approach aimed at the evaluation of the global levels of the histone chemical modifications. Since the relevant changes observed appear to be rather local and gene specific, investigating histone modifications at the level of specific gene promoters of interest is thus to be recommended for future studies. Furthermore, decoding the multiple regulatory mechanisms by which polyamines exert their influence on chromatin-modifier enzymes will reasonably require focus on selected individual polyamine-regulated genes. The evaluation of the many known chromatin-remodeling enzymes for their individual susceptibility to polyamines or polyamine derivatives will also be helpful: determining how they discriminate between the different enzyme isoforms is expected to be a fruitful line of research for drug discovery, e.g., in cancer prevention and therapy. Indeed, polyamine derivatives acting as epigenetic modulators appear to be molecules with great potential as antitumor drugs. All these novel polyamine-based pharmacologically active molecules are thus promising tools, both as a stand-alone strategy and in combination with other anticancer compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

CpG:

Cytosine preceding guanine

DFMO:

α-Difluoromethylornithine

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HDACi:

Histone deacetylase inhibitor

LSD1:

Lysine demethylase 1

ODC:

Ornithine decarboxylase

PABA:

Polyaminobenzamide derivatives

PAHA:

Polyaminohydroxamic acid derivatives

PAOs:

Polyamine oxidases

PcG:

Polycomb group

PUT:

Putrescine

SAHA:

Suberoylanilide hydroxamic acid

SAM:

S-adenosylmethionine

SC:

Stem cell

SMO:

Spermine oxidase

SPD:

Spermidine

SPM:

Spermine

TGase:

Transglutaminase

TrxG:

Thritorax group

TSGs:

Tumor suppressor genes

References

  • Aldana-Masangkay GI, Sakamoto KM (2011) The role of HDAC6 in cancer. J Biomed Biotechnol 2011:875824. doi:10.1155/2011/875824

    PubMed Central  PubMed  Google Scholar 

  • Bandyopadhyay K, Banères JL, Martin A, Blonski C, Parello J, Gjerset RA (2009) Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer-specific chemo- and radiosensitization. Cell Cycle 8:2779–2788 (erratum in: cell cycle. 2010 9:1023)

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basu HS, Sturkenboom MC, Delcros JG et al (1992) Effect of polyamine depletion on chromatin structure in U-87 MG human brain tumour cells. Biochem J 282:723–727

    CAS  PubMed  Google Scholar 

  • Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol Suppl 1:S4–S11

    Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    CAS  PubMed  Google Scholar 

  • Bistulfi G, Diegelman P, Foster BA, Kramer DL, Porter CW, Smiraglia DJ (2009) Polyamine biosynthesis impacts cellular folate requirements necessary to maintain S-adenosylmethionine and nucleotide pools. FASEB J 23:2888–2897. doi:10.1096/fj.09-130708

    CAS  PubMed  Google Scholar 

  • Boncher T, Bi X, Varghese S, Casero RA Jr, Woster PM (2007) Polyamine-based analogues as biochemical probes and potential therapeutics. Biochem Soc Trans 35:356–363

    CAS  PubMed  Google Scholar 

  • Brooks WH (2012) Autoimmune diseases and polyamines. Clinic Rev Allerg Immunol 42:58–70. doi:10.1007/s12016-011-8290-y

    CAS  Google Scholar 

  • Caldarera CM, Casti A, Guarnieri C, Moruzzi G (1975) Regulation of ribonucleic acid synthesis by polyamines. Reversal by spermine of inhibition by methylglyoxal bis(guanylhydrazone) of ribonucleic acid synthesis and histone acetylation in rabbit heart. Biochem J 152:91–98

    CAS  PubMed  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    CAS  PubMed  Google Scholar 

  • Casero RA Jr, Woster PM (2009) Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem 52:4551–4573. doi:10.1021/jm900187v

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desiderio MA (1992) Opposite responses of nuclear spermidine N8-acetyltransferase and histone acetyltransferase activities to regenerative stimuli in rat liver. Hepatology 15:928–933

    CAS  PubMed  Google Scholar 

  • Desiderio MA, Mattei S, Biondi G, Colombo MP (1993) Cytosolic and nuclear spermidine acetyltransferases in growing NIH 3T3 fibroblasts stimulated with serum or polyamines: relationship to polyamine-biosynthetic decarboxylases and histone acetyltransferase. Biochem J 293:475–479

    CAS  PubMed  Google Scholar 

  • Dod B, Kervabon A, Parello J (1982) Effect of cations on the acetylation of chromatin in vitro. Eur J Biochem 121:401–405

    CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314. doi:10.1038/ncb1975

    CAS  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159. doi:10.1056/NEJMra072067

    CAS  PubMed  Google Scholar 

  • Estepa I, Pestaña A (1981) Activation by polyamines of the acetylation of endogenous histones in isolated chromatin and nuclei from Artemia. Eur J Biochem 119:431–436

    CAS  PubMed  Google Scholar 

  • Fiori LM, Turecki G (2008) Implication of the polyamine system in mental disorders. J Psychiatry Neurosci 33:102–110

    PubMed Central  PubMed  Google Scholar 

  • Fisher CL, Fisher AG (2011) Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev 21:140–146. doi:10.1016/j.gde.2011.01.015

    CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    CAS  PubMed  Google Scholar 

  • Giordano E, Flamigni F, Guarnieri C, Muscari C, Pignatti C, Stefanelli C, Tantini B, Caldarera CM (2010) Polyamines in cardiac physiology and disease. Open Heart Fail J 3:25–30. doi:10.2174/1876535101003020025

    CAS  Google Scholar 

  • Govoni M, Bonavita F, Shantz LM, Guarnieri C, Giordano E (2010) Overexpression of ornithine decarboxylase increases myogenic potential of H9c2 rat myoblasts. Amino Acids 38:541–547. doi:10.1007/s00726-009-0415-8

    CAS  PubMed  Google Scholar 

  • Grant S, Dai Y (2012) Histone deacetylase inhibitors and rational combination therapies. Adv Cancer Res 116:199–237. doi:10.1016/B978-0-12-394387-3.00006-9

    CAS  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    CAS  PubMed  Google Scholar 

  • Hobbs CA, Gilmour SK (2000) High levels of intracellular polyamines promote histone acetyltransferase activity resulting in chromatin hyperacetylation. J Cell Biochem 77:345–360

    CAS  PubMed  Google Scholar 

  • Hobbs CA, Paul BA, Gilmour SK (2002) Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res 62:67–74

    CAS  PubMed  Google Scholar 

  • Hobbs CA, Paul BA, Gilmour SK (2003) Elevated levels of polyamines alter chromatin in murine skin and tumors without global changes in nucleosome acetylation. Exp Cell Res 290:427–436

    CAS  PubMed  Google Scholar 

  • Hobbs CA, Wei G, DeFeo K, Paul B, Hayes CS, Gilmour SK (2006) Tip60 protein isoforms and altered function in skin and tumors that overexpress ornithine decarboxylase. Cancer Res 66:8116–8122

    CAS  PubMed  Google Scholar 

  • Huang Y, Greene E, Murray Stewart T et al (2007) Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci USA 104:8023–8028

    CAS  PubMed  Google Scholar 

  • Huang Y, Stewart TM, Wu Y et al (2009) Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res 15:7217–7228. doi:10.1158/1078-0432.CCR-09-1293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51. doi:10.1016/j.biocel.2009.07.009

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    CAS  PubMed  Google Scholar 

  • Kahl P, Gullotti L, Heukamp LC et al (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66:11341–11347

    CAS  PubMed  Google Scholar 

  • Libby PR (1978) Properties of an acetylspermidine deacetylase from rat liver. Arch Biochem Biophys 188:360–363

    CAS  PubMed  Google Scholar 

  • Liu Y, Lu C, Yang Y et al (2011) Influence of histone tails and H4 tail acetylations on nucleosome–nucleosome interactions. J Mol Biol 414:749–764. doi:10.1016/j.jmb.2011.10.031

    CAS  PubMed  Google Scholar 

  • Mai A, Massa S, Rotili D et al (2005) Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 25:261–309

    CAS  PubMed  Google Scholar 

  • Matthews HR (1993) Polyamines, chromatin structure and transcription. Bio Essays 15:561–566

    CAS  Google Scholar 

  • Meyskens FL Jr, Gerner EW (1999) Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 5:945–951

    CAS  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohn F, Schübeler D (2009) Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25:129–136. doi:10.1016/j.tig.2008.12.005

    CAS  PubMed  Google Scholar 

  • Muscari C, Bonafé F, Carboni M et al (2008) Difluoromethylornithine stimulates early cardiac commitment of mesenchymal stem cells in a model of mixed culture with cardiomyocytes. J Cell Biochem 103:1046–1052. doi:10.1002/jcb.21683

    CAS  PubMed  Google Scholar 

  • Nayvelt I, Hyvönen MT, Alhonen L et al (2010) DNA condensation by chiral alpha-methylated polyamine analogues and protection of cellular DNA from oxidative damage. Biomacromolecules 11:97–105. doi:10.1021/bm900958c

    CAS  PubMed  Google Scholar 

  • Ohishi H, Odoko M, Grzeskowiak K et al (2008) Polyamines stabilize left-handed Z-DNA: using X-ray crystallographic analysis, we have found a new type of polyamine (PA) that stabilizes left-handed Z-DNA. Biochem Biophys Res Commun 366:275–280

    CAS  PubMed  Google Scholar 

  • Palmer AJ, Wallace H (2010) The polyamine transport system as a target for anticancer drug development. Amino Acids 38:415–422. doi:10.1007/s00726-009-0400-2

    CAS  PubMed  Google Scholar 

  • Park IH, Kim MM (2012) Spermidine inhibits MMP-2 via modulation of histone acetyltransferase and histone deacetylase in HDFs. Int J Biol Macromol 51:1003–1007. doi:10.1016/j.ijbiomac.2012.08.013

    CAS  PubMed  Google Scholar 

  • Paz EA, Garcia-Huidobro J, Ignatenkos NA (2011) Polyamines in cancer. Adv Clin Chem 54:45–70

    CAS  PubMed  Google Scholar 

  • Pollard KJ, Samuels ML, Crowley KA, Hansen JC, Peterson CL (1999) Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. EMBO J 18:5622–5633

    CAS  PubMed  Google Scholar 

  • Poulin R, Lu L, Ackermann B, Bey P, Pegg AE (1992) Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem 267:150–158

    CAS  PubMed  Google Scholar 

  • Sarkar T, Petrov AS, Vitko JR, Santai CT, Harvey SC, Mukerji I, Hud NV (2009) Integration host factor (IHF) dictates the structure of polyamine-DNA condensates: implications for the role of IHF in the compaction of bacterial chromatin. Biochem 48:667–675. doi:10.1021/bi8019965

    Google Scholar 

  • Sato N, Ohtake Y, Kato H, Abe S, Kohno H, Ohkubo Y (2003) Effects of polyamines on histone polymerization. J Protein Chem 22:303–307

    CAS  PubMed  Google Scholar 

  • Saunders LR, Verdin E (2006) Ornithine decarboxylase activity in tumor cell lines correlates with sensitivity to cell death induced by histone deacetylase inhibitors. Mol Cancer Ther 5:2777–2785

    CAS  PubMed  Google Scholar 

  • Scoumanne A, Chen X (2007) The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J Biol Chem 282:15471–15475

    CAS  PubMed  Google Scholar 

  • Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233

    CAS  PubMed  Google Scholar 

  • Senanayake MD, Amunugama H, Boncher TD, Casero RA, Woster PM (2009) Design of polyamine-based therapeutic agents: new targets and new directions. Essays Biochem 46:77–94. doi:10.1042/bse0460006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma SK, Wu Y, Steinbergs N, Crowley ML, Hanson AS, Casero RA, Woster PM (2010) (Bis)urea and (bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. J Med Chem 53:5197–5212. doi:10.1021/jm100217a

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma SK, Hazeldine S, Crowley ML et al (2012) Polyamine-based small molecule epigenetic modulators. Med Chem Comm 3:14–21

    CAS  Google Scholar 

  • Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25:1–14

    CAS  PubMed  Google Scholar 

  • Tabe Y, Jin L, Contractor R et al (2007) Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell Death Differ 14:1443–1456

    CAS  PubMed  Google Scholar 

  • Temiz NA, Donohue DE, Bacolla A, Luke BT, Collins JR (2012) The role of methylation in the intrinsic dynamics of B- and Z-DNA. PLoS One 7:e35558. doi:10.1371/journal.pone.0035558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varghese S, Gupta D, Baran T, Jiemjit A, Gore SD, Casero RA Jr, Woster PM (2005) Alkyl-substituted polyaminohydroxamic acids: a novel class of targeted histone deacetylase inhibitors. J Med Chem 48:6350–6365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varghese S, Senanayake T, Murray-Stewart T, Doering K, Fraser A, Casero RA Jr, Woster PM (2008) Polyaminohydroxamic acids and polyaminobenzamides as isoform selective histone deacetylase inhibitors. J Med Chem 51:2447–2456. doi:10.1021/jm701384x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Fries D, Blankenship J (1999) Effect of N8-acetylspermidine deacetylase inhibition on the growth of L1210 cells. Biochem Pharmacol 57:1095–1103

    CAS  PubMed  Google Scholar 

  • Wei G, Hobbs CA, Defeo K, Hayes CS, Gilmour SK (2007) Polyamine-mediated regulation of protein acetylation in murine skin and tumors. Mol Carcinog 46:611–617

    CAS  PubMed  Google Scholar 

  • Wu Y, Steinbergs N, Murray-Stewart T, Marton LJ, Casero RA Jr (2012) Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes. Biochem J 442:693–701. doi:10.1042/BJ20111271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Q, Huang Y, Marton LJ, Woster PM, Davidson NE, Casero RA Jr (2012) Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells. Amino Acids 42:887–898. doi:10.1007/s00726-011-1004-1

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

AP thanks the National Institute for Cardiovascular Research [(INRC), Bologna, Italy] for the past, and the IRCCS Romagnolo Scientific Institute for the Study and Treatment of Cancer [(IRST), Meldola, Italy] for the present, granting of funding to partially cover her fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Giordano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasini, A., Caldarera, C.M. & Giordano, E. Chromatin remodeling by polyamines and polyamine analogs. Amino Acids 46, 595–603 (2014). https://doi.org/10.1007/s00726-013-1550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1550-9

Keywords

Navigation