Skip to main content

Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 966))

Abstract

The organisation of chromatin is first discussed to conclude that nucleosomes play both structural and transcription-regulatory roles. The presence of nucleosomes makes difficult the access of transcriptional factors to their target sequences and the action of RNA polymerases. The histone post-translational modifications and nucleosome remodelling are first discussed, from a historical point of view, as mechanisms to remove the obstacles imposed by chromatin structure to transcription. Instead of reviewing the state of the art of the whole field, this review is centred on some open questions. First, some “non-classical” histone modifications, such as short-chain acylations other than acetylation, are considered to conclude that their relationship with the concentration of metabolic intermediaries might make of them a sensor of the physiological state of the cells. Then attention is paid to the interest of studying chromatin organisation and epigenetic marks at a single nucleosome level as a complement to genome-wide approaches. Finally, as a consequence of the above questions, the review focuses on the presence of multiple histone post-translational modifications on a single nucleosome. The methods to detect them and their meaning, with special emphasis on bivalent marks, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BRD:

bromodomain

ChIP:

chromatin immunoprecipitation

HAT:

histone acetyltransferase

HDAC:

histone deacetylase

HP1:

heterochromatin protein 1

MNP:

micrococcal nuclease protection

NFR:

nucleosome-free region

PCR:

polymerase chain reaction

PHD:

plant homeodomain

PTM:

post-translational modification

RT-qPCR:

real time quantitative PCR

TG:

transglutaminase

TPA:

12-O-tetradecanoylphorbol-13-acetate

TSS:

Transcription start site

YEATS:

YNL107w, ENL, AF-9, and TFIIF small subunit

ZMYND8:

zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8

References

  • Adhikary S, Sanyal S, Basu M, Sengupta I, Sen S, Srivastava DK, Roy S, Das C (2016) Selective recognition of H3.1K36 dimethylation/H4K16 acetylation facilitates the regulation of all-trans-retinoic acid (ATRA)-responsive genes by putative chromatin reader ZMYND8. J Biol Chem 291:2664–2681

    Article  CAS  PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 315:786–794

    Article  Google Scholar 

  • Andrews FH, Shinsky SA, Shanle EK, Bridgers JB, Gest A, Tsun IK, Krajewski K, Shi X, Strahl BD, Kutateladze TG (2016) The Taf14 YEATS domain is a reader of histone crotonylation. Nat Chem Biol 12:396–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arents G, Moudrianakis EN (1993) Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A 90:10489–10493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88:10148–10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldan F, Mio C, Lavarone E, Di Loreto C, Puglisi F, Damante G, Puppin C (2015) Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells. Oncol Rep 33:2199–2206

    Article  CAS  PubMed  Google Scholar 

  • Ballestar E, Abad C, Franco L (1996) Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 271:18817–18824

    Article  CAS  PubMed  Google Scholar 

  • Bao X, Wang Y, Li X, Li X, Liu Z, Yang T (2014) Identification of “erasers” for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3:e02999

    Article  PubMed Central  Google Scholar 

  • Basso M, Ratan RR (2013) Transglutaminase is a therapeutic target for oxidative stress, excitotoxicity and stroke: a new epigenetic kid on the CNS block. J Cereb Blood Flow Metab 33:809–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berndsen CE, Albaugh BN, Tan S, Denu JM (2007) Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry 46:623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukouris AE, Zervopoulos SD, Michelakis ED (2016) Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci 41:712–730

    Article  CAS  PubMed  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6:812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Tang Y, Chen Y, Kim S, Liu H, Li SSC, Gu W, Zhao Y (2009) Molecular characterization of propionyllysines in non-histone proteins. Mol Cell Proteomics 8:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915

    Article  CAS  PubMed  Google Scholar 

  • Crane-Robinson C, Hebbes TR, Clayton AL, Thorne AW (1997) Chromosomal mapping of core histone acetylation by immunoselection. Methods 12:48–56

    Article  CAS  PubMed  Google Scholar 

  • Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P (2003) Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 116:4905–4914

    Article  CAS  PubMed  Google Scholar 

  • Cutter AR, Hayes JJ (2015) A brief review of nucleosome structure. FEBS Lett 589:2914–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daban J-R (2015) Stacked thin layers of metaphase chromatin explain the geometry of chromosome rearrangements and banding. Sci Rep 5:14891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Dieuleveult M, Yen K, Hmitou I, Depaux A, Boussouar F, Dargham DB, Jounier S, Humbertclaude H, Ribierre F, Baulard C, Farrell NP, Park B, Keime C, Carrière L, Berlivet S, Gut M, Gut I, Werner M, Deleuze J-F, Olaso R, Aude J-C, Chantalat S, Pugh BF, Gérard M (2016) Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530:113–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobenecker M-W, Kim JK, Marcello J, Fang TC, Prinjha R, Bosselut R, Tarakhovsky A (2015) Coupling of T cell receptor specificity to natural killer T cell development by bivalent histone H3 methylation. J Exp Med 212:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327:85–96

    Article  CAS  PubMed  Google Scholar 

  • Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim JH, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci U S A 105:19732–19737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Krautkramer KA, Feldman JL, Denu JM (2015) Metabolic regulation of histone post-translational modifications. ACS Chem Biol 10:95–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A 73:1897–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn EM, Huang OW, Poy F, Oppikofer M, Bellon SF, Tang Y, Cochran AG (2015) A subset of human bromodomains recognizes butyryllysine and crotonyllysine histone peptide modifications. Structure 23:1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Furlan-Magaril M, Rincón-Arano H, Recillas-Targa F (2009) Sequential chromatin immunoprecipitation protocol: ChIP-reChIP. Methods Mol Biol 543:253–266

    Article  CAS  PubMed  Google Scholar 

  • Gállego I, Castro-Hartmann P, Caravaca JM, Caño S, Daban JR (2009) Dense chromatin plates in metaphase chromosomes. Eur Biophys J 38:503–522

    Article  PubMed  Google Scholar 

  • Gan Q, Yoshida T, McDonald OG, Owens GK (2007) Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25:2–9

    Article  CAS  PubMed  Google Scholar 

  • Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC (2007) N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282:30239–30245

    Article  CAS  PubMed  Google Scholar 

  • Georgieva EI, López-Rodas G, Sendra R, Grobner P, Loidl P (1991) Histone acetylation in Zea mays. II biological significance of post- translational histone acetylation during embryo germination. J Biol Chem 266:18751–18760

    CAS  PubMed  Google Scholar 

  • Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, Tang Z, Buchou T, Vitte AL, He T, Cheng Z, Montellier E, Gaucher J, Curtet S, Debernardi A, Charbonnier G, Puthier D, Petosa C, Panne D, Rousseaux S, Roeder RG, Zhao Y, Khochbin S (2016) Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol Cell 62:169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoryev SA, Woodcock CL (2012) Chromatin organization – the 30 nm fiber. Exp Cell Res 318:1448–1455

    Article  CAS  PubMed  Google Scholar 

  • Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502:489–498

    Article  CAS  PubMed  Google Scholar 

  • Haery L, Thompson RC, Gilmore TD (2015) Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 6:184–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harikumar A, Meshorer E (2015) Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 16:1609–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiragami-Hamada K, Soeroes S, Nikolov M, Wilkins B, Kreuz S, Chen C, De La Rosa-Velázquez IA, Zenn HM, Kost N, Pohl W, Chernev A, Schwarzer D, Jenuwein T, Lorincz M, Zimmermann B, Walla PJ, Neumann H, Baubec T, Urlaub H, Fischle W (2016) Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin. Nat Commun 7:11310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33:248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infante JJ, Law GL, Young ET (2012) Analysis of nucleosome positioning using a nucleosome-scanning assay. Methods Mol Biol 833:63–87

    Article  CAS  PubMed  Google Scholar 

  • Irving-Hooper BK, Binda O (2015) A phosphotyrosine switch controls the association of histone mark readers with methylated proteins. Biochemistry 55:1631–1634

    Article  PubMed  CAS  Google Scholar 

  • Iwahara T, Bonasio R, Narendra V, Reinberg D (2012) SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol 32:5022–5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janke R, Dodson AE, Rine J (2015) Metabolism and epigenetics. Annu Rev Cell Dev Biol 31:473–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC (2007) N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc Natl Acad Sci U S A 104:60–65

    Article  CAS  PubMed  Google Scholar 

  • Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L (2012) H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13:424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Kim A (2010) Sequential changes in chromatin structure during transcriptional activation in the β globin LCR and its target gene. Int J Biochem Cell Biol 42:1517–1524

    Article  CAS  PubMed  Google Scholar 

  • Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet 58:439–445

    Article  CAS  PubMed  Google Scholar 

  • Kinkley S, Helmuth J, Polansky JK, Dunkel I, Gasparoni G, Fröhler S, Chen W, Walter J, Hamann A, Chung HR (2016) reChIP-seq reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4+ memory T cells. Nat Commun 7:12514

    Google Scholar 

  • Klein BJ, Lalonde M-E, Côté J, Yang XJ, Kutateladze TG (2014) Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics 9:186–193

    Article  CAS  PubMed  Google Scholar 

  • Kuo TF, Tatsukawa H, Kojima S (2011) New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 278:4756–4767

    Article  CAS  PubMed  Google Scholar 

  • Lai T-S, Lin C-J, Greenberg CS (2016) Role of tissue transglutaminase-2 (TG2)-mediated aminylation in biological processes. Amino Acids. doi:10.1007/s00726-016-2270-8

  • Längst G, Manelyte L (2015) Chromatin remodelers: from function to dysfunction. Genes (Basel) 6:299–324

    Article  CAS  Google Scholar 

  • Laurent BC, Treich I, Carlson M (1993) The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev 7:583–591

    Article  CAS  PubMed  Google Scholar 

  • Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32:42–56

    Article  CAS  PubMed  Google Scholar 

  • Lechner CC, Agashe ND, Fierz B (2016) Traceless synthesis of asymmetrically modified bivalent nucleosomes. Angew Chem Int Ed 55:2903–2906

    Article  CAS  Google Scholar 

  • Leemhuis H, Packman LC, Nightingale KP, Hollfelder F (2008) The human histone acetyltransferase P/CAF is a promiscuous histone propionyltransferase. Chembiochem 9:499–503

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhu P (2015) Structure and organization of chromatin fiber in the nucleus. FEBS Lett 589:2893–2904

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sabari BR, Panchenko T, Wen H, Zhao D, Guan H, Wan L, Huang H, Tang Z, Zhao Y, Roeder RG, Shi X, Allis CD, Li H (2016) Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain. Mol Cell 62:181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Su X, He B (2012) Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol 7:947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin B, Lee H, Yoon J-G, Madan A, Wayner E, Tonning S, Hothi P, Schroeder B, Ulasov I, Foltz G, Hood L, Cobbs C (2015) Global analysis of H3K4me3 and H3K27me3 profiles in glioblastoma stem cells and identification of SLC17A7 as a bivalent tumor suppressor gene. Oncotarget 6:5369–5381

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K (2009) Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem 284:32288–32295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loidl P (1988) Towards an understanding of the biological function of histone acetylation. FEBS Lett 227:91–95

    Article  CAS  PubMed  Google Scholar 

  • López-Rodas G, Tordera V, Sánchez del Pino MM, Franco L (1989) Yeast contains multiple forms of histone acetyltransferase. J Biol Chem 264:19028–19033

    PubMed  Google Scholar 

  • López-Rodas G, Tordera V, Sánchez del Pino MM, Franco L (1991a) Subcellular localization and nucleosome specificity of yeast histone acetyltransferases. Biochemistry 30:3728–3732

    Article  PubMed  Google Scholar 

  • López-Rodas G, Georgieva EI, Sendra R, Loidl P (1991b) Histone acetylation in Zea mays I: activities of histone acetyltransferases and histone deacetylases. J Biol Chem 266:18745–18750

    PubMed  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Madiraju P, Pande SV, Prentki M, Madiraju SRM (2009) Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics 4:399–403

    Article  CAS  PubMed  Google Scholar 

  • Maeshima K, Imai R, Tamura S, Nozaki T (2014) Chromatin as dynamic 10-nm fibers. Chromosoma 123:225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matallana E, Franco L, Pérez-Ortín JE (1992) Chromatin structure of the yeast SUC2 promoter in regulatory mutants. Mol Gen Genet 231:395–400

    Article  CAS  PubMed  Google Scholar 

  • Matsushita N, Yonashiro R, Ogata Y, Sugiura A, Nagashima S, Fukuda T, Inatome R, Yanagi S (2011) Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells 16:190–202

    Article  CAS  PubMed  Google Scholar 

  • McConoughey SJ, Basso M, Niatsetskaya ZV, Sleiman SF, Smirnova NA, Langley BC, Mahishi L, Cooper AJL, Antonyak MA, Cerione RA, Li B, Starkov A, Chaturvedi RK, Bea MF, Coppola G, Geschwind DH, Ryu H, Xia L, Iismaa SE, Pallos J, Pasternack R, Hils M, Fan J, Raymond LA, Marsh JL, Thompson LM, Ratan RR (2010) Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington’s disease. EMBO Mol Med 2:349–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellor J (2006) Dynamic nucleosomes and gene transcription. Trends Genet 22:320–329

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, Gut P, Najjar R, Fitch M, Hellerstein M, Gibson BW, Verdin E (2015) SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell 59:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh KM, Allis CD, Li H (2016) Reading between the lines: “ADD”-ing histone and DNA methylation marks toward a new epigenetic “Sum.” ACS Chem Biol 11:554–563

    Google Scholar 

  • Noma K, Allis CD, Grewal SIS (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Nowak RP, Tumber A, Johansson C, Che KH, Brennan P, Owen D, Oppermann U (2016) Advances and challenges in understanding histone demethylase biology. Curr Opin Chem Biol 33:151–159

    Article  CAS  PubMed  Google Scholar 

  • Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BMM, Skinner ME, Lombard DB, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50:919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SS, Walt DR (1987) Substrate specificity of acetyl coenzyme A synthetase. J Biol Chem 262:7132–7134

    CAS  PubMed  Google Scholar 

  • Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BMM, Tishkoff D, Ho L, Lombard D, He T-C, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10:M111.012658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Ortín JE, Estruch F, Matallana E, Franco L (1987) Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res 15:6937–6956

    Article  PubMed  PubMed Central  Google Scholar 

  • Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22:148–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rando OJ, Chang HY (2009) Genome-wide views of chromatin structure. Annu Rev Biochem 78:245–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riffo-Campos ÁL, Castillo J, Tur G, González-Figueroa P, Georgieva EI, Rodríguez JL, López-Rodas G, Rodrigo MI, Franco L (2015) Nucleosome-specific, time-dependent changes in histone modifications during activation of the early growth response 1 (Egr1) gene. J Biol Chem 290:197–208

    Article  CAS  PubMed  Google Scholar 

  • Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339

    Article  PubMed  CAS  Google Scholar 

  • Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839:627–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD (2011) Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145:692–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, Dai L, Shimada M, Cross JR, Zhao Y, Roeder RG, Allis CD (2015) Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 58:203–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacilotto N, Espert A, Castillo J, Franco L, López-Rodas G (2011) Epigenetic transcriptional regulation of the growth arrest-specific gene 1 (Gas1) in hepatic cell proliferation at mononucleosomal resolution. PLoS One 6:e23318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeh R, Launer-Wachs R, Wandel H, Rahat A, Friedman N (2016) Elucidating combinatorial chromatin states at single-nucleosome resolution. Mol Cell 63:1–9

    Article  CAS  Google Scholar 

  • Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, Chen W, Zhang S, Weiss RS, Locasale JW, Auwerx J, Lin H (2016) Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A 113:4320–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajan SA, Hawkins RD (2012) Methods for identifying higher-order chromatin structure. Annu Rev Genomics Hum Genet 13:59–82

    Google Scholar 

  • Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, Paquet E, Ullah M, Landry AJ, Côté V, Yang XJ, Gozani O, Kutateladze TG, Côté J (2009) HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell 33:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval J, Rodríguez J (2004) RNAPol-ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Res 32:e88

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, Bunker RD, Wirth U, Bouwmeester T, Bauer A, Ly-Hartig N, Zhao K, Chan H, Gu J, Gut H, Fischle W, Müller J, Thomä NH (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42:330–341

    Article  CAS  PubMed  Google Scholar 

  • Sendra R, Rodrigo I, Salvador ML, Franco L (1988) Characterization of pea histone deacetylases. Plant Mol Biol 11:857–866

    Article  CAS  PubMed  Google Scholar 

  • Sendra R, Salvador ML, Franco L (1991) A chromatin-associated histone deacetylase from pea (Pisum sativum). Plant Sci 78:43–51

    Article  CAS  Google Scholar 

  • Shema E, Jones D, Shoresh N, Donohue L, Ram O, Bernstein BE (2016) Single-molecule decoding of combinatorially modified nucleosomes. Science 352:717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  CAS  PubMed  Google Scholar 

  • Simpson RT (1978) Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, Ohba R, Cook RG, Allis CD (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci U S A 96:14967–14972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H, Cook RG, Shabanowitz J, Hunt DF, Stallcup MR, Allis CD (2001) Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol 11:996–1000

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Denu JM (2016) Reading the combinatorial histone language. ACS Chem Biol 11:564–574

    Article  CAS  PubMed  Google Scholar 

  • Su J, Wang F, Cai Y, Jin J (2016a) The functional analysis of histone acetyltransferase MOF in tumorigenesis. Int J Mol Sci 17:99

    Article  PubMed Central  CAS  Google Scholar 

  • Su X, Wellen KE, Rabinowitz JD (2016b) Metabolic control of methylation and acetylation. Curr Opin Chem Biol 30:52–60. doi:10.1016/j.cbpa.2015.10.030

    Article  CAS  PubMed  Google Scholar 

  • Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E, Michelakis ED (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of Acetyl-CoA and histone acetylation. Cell 158:84–97

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  CAS  PubMed  Google Scholar 

  • Thomson S, Clayton AL, Mahadevan LC (2001) Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol Cell 8:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Tur G, Georgieva E, Gagete A, López-Rodas G, Rodríguez J, Franco L (2010) Factor binding and chromatin modification in the promoter of murine Egr1 gene upon induction. Cell Mol Life Sci:4065–4077

    Google Scholar 

  • Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol Cell 19:381–391

    Article  CAS  PubMed  Google Scholar 

  • van Holde KE (1989) Chromatin. Springer, New York

    Book  Google Scholar 

  • Vollmuth F, Geyer M (2010) Interaction of propionylated and butyrylated histone H3 lysine marks with Brd4 bromodomains. Angew Chem Int Ed Engl 49:6768–6772

    Article  CAS  PubMed  Google Scholar 

  • Walter W, Clynes D, Tang Y, Marmorstein R, Mellor J, Berger SL (2008) 14-3-3 interaction with histone H3 involves a dual modification pattern of phosphoacetylation. Mol Cell Biol 28:2840–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Dent SYR (2014) Functions of SAGA in development and disease. Epigenomics 6:329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Balamotis MA, Stevens JL, Yamaguchi Y, Handa H, Berk AJ (2005) Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol Cell 17:683–694

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh T-Y, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wapenaar H, Dekker FJ (2016) Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenetics 8:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C (1980) The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286:854–860

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Xie D, Cao X, Yu P, Xing X, Chen C-C, Musselman M, Xie M, West FD, Lewin HA, Wang T, Zhong S (2012) Comparative epigenomic annotation of regulatory DNA. Cell 149:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, Boeke JD, Zhao Y (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11:100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YM, Du JY, Lau ATY (2014a) Posttranslational modifications of human histone H3: an update. Proteomics 14:2047–2060

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Wang J, Wu Z, Qian L, Dai L, Wan X, Tan M, Zhao Y, Wu Y (2014b) SAHA regulates histone acetylation, butyrylation, and protein expression in neuroblastoma. J Proteome Res 13:4211–4219

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ (2015) MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. Biochim Biophys Acta 1853:1818–1826

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Pugh BF (2011) High-resolution genome-wide mapping of the primary structure of chromatin. Cell 144:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Chen Y, Zhang Z, Zhao Y (2009) Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 8:900–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Guan H, Zhao Z, Mi W, Wen H, Li Y, Zhao Y, Allis CD, Shi X, Li H (2016) YEATS2 is a selective histone crotonylation reader. Cell Res 26:629–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministerio de Economía y Competitividad (FIS PI12/02110) and from Generalitat Valenciana (PROMETEO 2013–005). We are very indebted to Prof. Juan R. Viña for attracting our attention to the metabolic enzymes that “moonlight” in the nucleus.

Conflict of Interest

The authors declare no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Castillo, J., López-Rodas, G., Franco, L. (2017). Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 966. Springer, Singapore. https://doi.org/10.1007/5584_2017_58

Download citation

Publish with us

Policies and ethics