Skip to main content

Advertisement

Log in

O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Continuous hyperglycemia is considered to be the most significant pathogenesis of diabetic cardiomyopathy, which manifests as cardiac hypertrophy and subsequent heart failure. O-GlcNAcylation has attracted attention as a post-translational protein modification in the past decade. The role of O-GlcNAcylation in high glucose-induced cardiomyocyte hypertrophy remains unclear. We studied the effect of O-GlcNAcylation on neonatal rat cardiomyocytes that were exposed to high glucose and myocardium in diabetic rats induced by streptozocin. High glucose (30 mM) incubation induced a greater than twofold increase in cell size and increased hypertrophy marker gene expression accompanied by elevated O-GlcNAcylation protein levels. High glucose increased ERK1/2 but not p38 MAPK or JNK activity, and cyclin D2 expression was also increased. PUGNAc, an inhibitor of β-N-acetylglucosaminidase, enhanced O-GlcNAcylation and imitated the effects of high glucose. OGT siRNA and ERK1/2 inhibition with PD98059 treatment blunted the hypertrophic response and cyclin D2 upregulation. OGT inhibition also prevented ERK1/2 activation. We also observed concentric hypertrophy and similar changes of O-GlcNAcylation level, ERK1/2 activation and cyclin D2 expression in myocardium of diabetic rats induced by streptozocin. In conclusion, O-GlcNAcylation plays a role in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544

    Article  PubMed  CAS  Google Scholar 

  • Andres-Bergos J, Tardio L, Larranaga-Vera A, Gomez R, Herrero-Beaumont G, Largo R (2012) The increase in O-linked N-acetylglucosamine protein modification stimulates chondrogenic differentiation both in vitro and in vivo. J Biol Chem 287:33615–33628

    Article  PubMed  CAS  Google Scholar 

  • Angelis E, Garcia A, Chan SS et al (2008) A cyclin D2-Rb pathway regulates cardiac myocyte size and RNA polymerase III after biomechanical stress in adult myocardium. Circ Res 102:1222–1229

    Article  PubMed  CAS  Google Scholar 

  • Bicknell KA, Surry EL, Brooks G (2003) Targeting the cell cycle machinery for the treatment of cardiovascular disease. J Pharm Pharmacol 55:571–591

    Article  PubMed  CAS  Google Scholar 

  • Bueno OF, De Windt LJ, Tymitz KM et al (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350

    Article  PubMed  CAS  Google Scholar 

  • Busk PK, Hinrichsen R (2003) Cyclin D in left ventricle hypertrophy. Cell Cycle 2:91–95

    Article  PubMed  CAS  Google Scholar 

  • Busk PK, Bartkova J, Strom CC et al (2002) Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res 56:64–75

    Article  PubMed  CAS  Google Scholar 

  • Busk PK, Hinrichsen R, Bartkova J et al (2005) Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy. Exp Cell Res 304:149–161

    Article  PubMed  CAS  Google Scholar 

  • Champattanachai V, Marchase RB, Chatham JC (2008) Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am J Physiol Cell Physiol 294:C1509–C1520

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Khan ZA, Karmazyn M, Chakrabarti S (2007) Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-induced cardiomyocyte hypertrophy. Diabetes Metab Res Rev 23:356–367

    Article  PubMed  Google Scholar 

  • Chou CF, Omary MB (1993) Mitotic arrest-associated enhancement of O-linked glycosylation and phosphorylation of human keratins 8 and 18. J Biol Chem 268:4465–4472

    PubMed  CAS  Google Scholar 

  • Ciaraldi TP, Carter L, Nikoulina S, Mudaliar S, McClain DA, Henry RR (1999) Glucosamine regulation of glucose metabolism in cultured human skeletal muscle cells: divergent effects on glucose transport/phosphorylation and glycogen synthase in non-diabetic and type 2 diabetic subjects. Endocrinology 140:3971–3980

    Article  PubMed  CAS  Google Scholar 

  • Clark RJ, McDonough PM, Swanson E et al (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237

    Article  PubMed  CAS  Google Scholar 

  • Clerk A, Sugden PH (2001) Untangling the web: specific signaling from PKC isoforms to MAPK cascades. Circ Res 89:847–849

    PubMed  CAS  Google Scholar 

  • Clerk A, Aggeli IK, Stathopoulou K, Sugden PH (2006) Peptide growth factors signal differentially through protein kinase C to extracellular signal-regulated kinases in neonatal cardiomyocytes. Cell Signal 18:225–235

    Article  PubMed  CAS  Google Scholar 

  • Darley-Usmar VM, Ball LE, Chatham JC (2012) Protein O-linked beta-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 52:538–549

    Article  PubMed  CAS  Google Scholar 

  • Dong L, Wang W, Wang F et al (1999) Mechanisms of transcriptional activation of bcl-2 gene expression by 17beta-estradiol in breast cancer cells. J Biol Chem 274:32099–32107

    Article  PubMed  CAS  Google Scholar 

  • Du XL, Edelstein D, Rossetti L et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97:12222–12226

    Article  PubMed  CAS  Google Scholar 

  • Dudognon P, Maeder-Garavaglia C, Carpentier JL, Paccaud JP (2004) Regulation of a COPII component by cytosolic O-glycosylation during mitosis. FEBS Lett 561:44–50

    Article  PubMed  CAS  Google Scholar 

  • Facundo HT, Brainard RE, Watson LJ et al (2012) O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 302:H2122–H2130

    Article  PubMed  CAS  Google Scholar 

  • Fong JJ, Nguyen BL, Bridger R et al (2012) Beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem 287:12195–12203

    Article  PubMed  CAS  Google Scholar 

  • Fulop N, Zhang Z, Marchase RB, Chatham JC (2007) Glucosamine cardioprotection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation. Am J Physiol Heart Circ Physiol 292:H2227–H2236

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Jing L (2011) Glutamine induces heat shock protein 70 expression via O-GlcNAc modification and subsequent increased expression and transcriptional activity of heat shock factor-1. Minerva Anestesiol 77:488–495

    PubMed  CAS  Google Scholar 

  • Hiromura M, Choi CH, Sabourin NA, Jones H, Bachvarov D, Usheva A (2003) YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation). J Biol Chem 278:14046–14052

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Suarez J, Fricovsky E et al (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284:547–555

    Article  PubMed  CAS  Google Scholar 

  • Jones SP, Zachara NE, Ngoh GA et al (2008) Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 117:1172–1182

    Article  PubMed  CAS  Google Scholar 

  • Kamemura K, Hayes BK, Comer FI, Hart GW (2002) Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J Biol Chem 277:19229–19235

    Article  PubMed  CAS  Google Scholar 

  • Kayampilly PP, Menon KM (2012) AMPK activation by dihydrotestosterone reduces FSH-stimulated cell proliferation in rat granulosa cells by inhibiting ERK signaling pathway. Endocrinology 153:2831–2838

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RA, Kemp TJ, Sugden PH, Clerk A (2006) Using U0126 to dissect the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade in the regulation of gene expression by endothelin-1 in cardiac myocytes. J Mol Cell Cardiol 41:236–247

    Article  PubMed  CAS  Google Scholar 

  • Laczy B, Hill BG, Wang K et al (2009) Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 296:H13–H28

    Article  PubMed  CAS  Google Scholar 

  • LaMorte VJ, Thorburn J, Absher D et al (1994) Gq- and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation. J Biol Chem 269:13490–13496

    PubMed  CAS  Google Scholar 

  • Lefebvre T, Baert F, Bodart JF, Flament S, Michalski JC, Vilain JP (2004) Modulation of O-GlcNAc glycosylation during Xenopus oocyte maturation. J Cell Biochem 93:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Poolman RA, Brooks G (1998) Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am J Physiol 275:H814–H822

    PubMed  CAS  Google Scholar 

  • Lim KH, Chang HI (2006) O-linked N-acetylglucosamine suppresses thermal aggregation of Sp1. FEBS Lett 580:4645–4652

    Article  PubMed  CAS  Google Scholar 

  • Lima VV, Giachini FR, Carneiro FS et al (2008) Increased vascular O-GlcNAcylation augments reactivity to constrictor stimuli—VASOACTIVE PEPTIDE SYMPOSIUM. J Am Soc Hypertens. 2:410–417

    Article  PubMed  Google Scholar 

  • Lima VV, Giachini FR, Choi H et al (2009) Impaired vasodilator activity in deoxycorticosterone acetate-salt hypertension is associated with increased protein O-GlcNAcylation. Hypertension 53:166–174

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Pang Y, Chang T, Bounelis P, Chatham JC, Marchase RB (2006) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40:303–312

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Marchase RB, Chatham JC (2007) Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am J Physiol Heart Circ Physiol 293:H1391–H1399

    Article  PubMed  CAS  Google Scholar 

  • Lunde IG, Aronsen JM, Kvaloy H et al (2012) Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics 44:162–172

    Article  PubMed  CAS  Google Scholar 

  • Luo B, Soesanto Y, McClain DA (2008) Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler Thromb Vasc Biol 28:651–657

    Article  PubMed  CAS  Google Scholar 

  • Marsh SA, Dell’Italia LJ, Chatham JC (2011) Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids 40:819–828

    Article  PubMed  CAS  Google Scholar 

  • Marshall S, Nadeau O, Yamasaki K (2004) Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J Biol Chem 279:35313–35319

    Article  PubMed  CAS  Google Scholar 

  • Medford HM, Chatham JC, Marsh SA (2012) Chronic ingestion of a Western diet increases O-linked-beta-N-acetylglucosamine (O-GlcNAc) protein modification in the rat heart. Life Sci 90:883–888

    Article  PubMed  CAS  Google Scholar 

  • Murarka S, Movahed MR (2010) Diabetic cardiomyopathy. J Card Fail 16:971–979

    Article  PubMed  Google Scholar 

  • Musicki B, Kramer MF, Becker RE, Burnett AL (2005) Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA 102:11870–11875

    Article  PubMed  CAS  Google Scholar 

  • Nagy T, Champattanachai V, Marchase RB, Chatham JC (2006) Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. Am J Physiol Cell Physiol 290:C57–C65

    Article  PubMed  CAS  Google Scholar 

  • Ngoh GA, Watson LJ, Facundo HT, Dillmann W, Jones SP (2008) Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol 45:313–325

    Article  PubMed  CAS  Google Scholar 

  • Ngoh GA, Watson LJ, Facundo HT, Jones SP (2011) Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino Acids 40:895–911

    Article  PubMed  CAS  Google Scholar 

  • Piatelli MJ, Doughty C, Chiles TC (2002) Requirement for a hsp90 chaperone-dependent MEK1/2-ERK pathway for B cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. J Biol Chem 277:12144–12150

    Article  PubMed  CAS  Google Scholar 

  • Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178

    Article  PubMed  CAS  Google Scholar 

  • Roquemore EP, Chevrier MR, Cotter RJ, Hart GW (1996) Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. Biochemistry 35:3578–3586

    Article  PubMed  CAS  Google Scholar 

  • Singh AB, Guleria RS, Nizamutdinova IT, Baker KM, Pan J (2012) High glucose-induced repression of RAR/RXR in cardiomyocytes is mediated through oxidative stress/JNK signaling. J Cell Physiol 227:2632–2644

    Article  PubMed  CAS  Google Scholar 

  • Slawson C, Shafii S, Amburgey J, Potter R (2002) Characterization of the O-GlcNAc protein modification in Xenopus laevis oocyte during oogenesis and progesterone-stimulated maturation. Biochim Biophys Acta 1573:121–129

    Article  PubMed  CAS  Google Scholar 

  • Slawson C, Zachara NE, Vosseller K, Cheung WD, Lane MD, Hart GW (2005) Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem 280:32944–32956

    Article  PubMed  CAS  Google Scholar 

  • Slawson C, Lakshmanan T, Knapp S, Hart GW (2008) A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell 19:4130–4140

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson DR (1999) Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 42:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259:3308–3317

    PubMed  CAS  Google Scholar 

  • Tsai KH, Wang WJ, Lin CW et al (2012) NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-kappaB in cardiomyocytes exposed to high glucose. J Cell Physiol 227:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Virkamaki A, Yki-Jarvinen H (1999) Allosteric regulation of glycogen synthase and hexokinase by glucosamine-6-phosphate during glucosamine-induced insulin resistance in skeletal muscle and heart. Diabetes 48:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Wang Y (2001) Signal transduction in cardiac hypertrophy-dissecting compensatory versus pathological pathways utilizing a transgenic approach. Curr Opin Pharmacol 1:134–140

    Article  PubMed  CAS  Google Scholar 

  • Wells L, Slawson C, Hart GW (2011) The E2F-1 associated retinoblastoma-susceptibility gene product is modified by O-GlcNAc. Amino Acids 40:877–883

    Article  PubMed  CAS  Google Scholar 

  • Whelan SA, Hart GW (2003) Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation. Circ Res 93:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Xin X, Khan ZA, Chen S, Chakrabarti S (2004) Extracellular signal-regulated kinase (ERK) in glucose-induced and endothelin-mediated fibronectin synthesis. Lab Invest 84:1451–1459

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J (2011) Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 108:305–313

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Zhao Y, Fan Y, Wang M, Xu S, Fu G (2010) Epigallocatechin-3 gallate, a green tea catechin, attenuated the downregulation of the cardiac gap junction induced by high glucose in neonatal rat cardiomyocytes. Cell Physiol Biochem 26:403–412

    Article  PubMed  Google Scholar 

  • Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279:30133–30142

    Article  PubMed  CAS  Google Scholar 

  • Zhong W, Mao S, Tobis S et al (2006) Hypertrophic growth in cardiac myocytes is mediated by Myc through a Cyclin D2-dependent pathway. EMBO J 25:3869–3879

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Yang S, Champattanachai V et al (2009) Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-{kappa}B signaling. Am J Physiol Heart Circ Physiol 296:H515–H523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Biomedical Research Center in Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, for the use of instruments and equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Xia or Guosheng Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, F., Yu, L., Wang, M. et al. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. Amino Acids 45, 339–349 (2013). https://doi.org/10.1007/s00726-013-1504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1504-2

Keywords

Navigation